

ОБОСНОВЫВАЮЩИЕ МАТЕРИАЛЫ

К СХЕМЕ ТЕПЛОСНАБЖЕНИЯ ГОРОДА ОМСКА НА ПЕРИОД ДО 2033 ГОДА

(АКТУАЛИЗАЦИЯ НА 2021 ГОД)

ГЛАВА 10. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ

СОСТАВ РАБОТЫ

Наименование документа	Шифр
Схема теплоснабжения города Омска до 2033 года	52401.CT -ПСТ.000.000
Глава 1. Существующее положение в сфере производства, передачи и	52401.OM-ΠCT.001.000
потребления тепловой энергии для целей теплоснабжения	5240 1.ON-1 IC 1.00 1.000
Приложение 1. Энергоисточники города	52401.OM-ΠCT.001.001
Приложение 2. Тепловые сети города.	52401.OM-ΠCT.001.002
Часть 1. Материальные характеристики и схемы тепловых сетей	02 10 1.0W 110 1.00 1.002
Приложение 2. Тепловые сети города. Часть 2. Секционирующая и регулирующая арматура. Тепловые камеры. Насосные станции и ЦТП	52401.OM-ПСТ.001.002
Приложение 3. Тепловые нагрузки потребителей города	52401.OM-ΠCT.001.003
Приложение 4. Графики регулирования отпуска тепла. Расчетные гид-	
равлические режимы	52401.OM-ΠCT.001.004
Приложение 5. Часть 1. Повреждаемость трубопроводов	52401.OM-ПСТ.001.005
Приложение 5. Часть 2. Потери сетевой воды	52401.OM-ПСТ.001.005
Приложение 6. Данные для анализа температурных и гидравлических режимов отпуска тепла	52401.OM-ПСТ.001.006
Приложение 7. Зоны действия энергоисточников. Графическая часть	52401.OM-ПСТ.001.007
Приложение 8. Расчет показателей надежности	52401.OM-ПСТ.001.008
Глава 2. Существующее и перспективное потребление тепловой энергии на цели теплоснабжения	52401.OM-ПСТ.002.000
Приложение 1. Характеристика существующей и перспективной застройки и тепловой нагрузки по элементам территориального планирования	52401.OM-ПСТ.002.001
Приложение 2. Графическая часть	52401.OM-ПСТ.002.002
Глава 3. Электронная модель системы теплоснабжения города	52401.OM-ПСТ.003.000
Глава 4. Существующие и перспективные балансы тепловой мощности источников тепловой энергии и тепловой нагрузки потребителей	52401.OM-ΠCT 004.000
Глава 5. Мастер–план развития систем теплоснабжения города Омска	52401.OM-ПСТ 005.000
Глава 6. Существующие и перспективные балансы производительности водоподготовительных установок и максимального потребления теплоносителя теплопотребляющими установками потребителей, в том числе в аварийных режимах	52401.ОМ-ПСТ.006.000
Глава 7. Предложения по строительству, реконструкции, техническому	52401.OM-ΠCT 007.000
перевооружению и (или) модернизации источников тепловой энергии	
Глава 8. Предложения по строительству, реконструкции и (или) модернизации тепловых сетей	52401.OM-ПСТ.008.000
Приложение 1. Гидравлические расчеты	52401.OM-ΠCT.008.001
Приложение 2. Графическая часть	52401.OM-ΠCT.008.002
Глава 9. Предложения по переводу открытых систем теплоснабжения (горячего водоснабжения) в закрытые системы горячего водоснабжения	52401.OM-ΠCT.009.000
Глава 10. Перспективные топливные балансы	52401.OM-ΠCT.010.000
Глава 11. Оценка надежности теплоснабжения	52401.OM-ΠCT.011.000
Глава 12. Обоснование инвестиций в строительство, реконструкцию, техническое перевооружение и (или) модернизацию	52401.OM-ΠCT.012.000
Глава 13. Индикаторы развития систем теплоснабжения города	52401.OM-ΠCT.013.000
Глава 14. Ценовые (тарифные) последствия	52401.OM-ΠCT.014.000
Глава 15. Реестр единых теплоснабжающих организаций	52401.OM-ΠCT.015.000
Приложение 1. Графическая часть	52401.OM-ΠCT.015.001
Глава 16. Реестр мероприятий схемы теплоснабжения	52401.OM-ΠCT.016.000
Глава 17. Замечания и предложения к проекту схемы теплоснабжения	52401.OM-ΠCT.017.000

Наименование документа	Шифр
Глава 18. Сводный том изменений, выполненных в актуализированной схеме теплоснабжения на 2016 год	52401.OM-ΠCT.018.000
Глава 19. Сводный том изменений, выполненных в актуализированной схеме теплоснабжения на 2018 год	52401.OM-ΠCT.019.000
Глава 20. Сводный том изменений, выполненных в актуализированной схеме теплоснабжения на 2019 год	52401.OM-ΠCT.020.000
Глава 21. Сводный том изменений, выполненных в актуализированной схеме теплоснабжения на 2021 год	52401.OM-ПСТ.021.000

Содержание

BE	ВЕДЕ	НИЕ7
1.	ОБІ	ЦИЕ ПОЛОЖЕНИЯ 8
2.	ПЕР	СПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ ЭНЕРГОИСТОЧНИКОВ АО «ТГК-11» 9
	2.1	Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием
		возобновляемых источников энергии и местных видов топлива
	2.2	Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства
		тепловой энергии
	2.3	Описание изменений в перспективных топливных балансах за период, предшествующий актуализации
		схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных
		источников тепловой энергии
3.	ПЕР	СПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ ЭНЕРГОИСТОЧНИКОВ АО «ОМСК РТС»18
	3.1	
		возобновляемых источников энергии и местных видов топлива
	3.2	Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства
		тепловой энергии
	3.3	Описание изменений в перспективных топливных балансах за период, предшествующий актуализации
		схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных
		источников тепловой энергии
4.	ПЕР	СПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ КОТЕЛЬНЫХ МП Г. ОМСКА «ТЕПЛОВАЯ КОМПАНИЯ»25
	4.1	Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием
		возобновляемых источников энергии и местных видов топлива
	4.2	Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства
		тепловой энергии
	4.3	Описание изменений в перспективных топливных балансах за период, предшествующий актуализации
		схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных
		источников тепловой энергии
5.	ПЕР	СПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ КОТЕЛЬНЫХ ТЕПЛОСНАБЖАЮЩИХ ОРГАНИЗАЦИЙ62
	5.1	Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием
		возобновляемых источников энергии и местных видов топлива
	5.2	Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства
		тепловой энергии
	5.3	Описание изменений в перспективных топливных балансах за период, предшествующий актуализации
		схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных
		источников тепловой энергии112
6.	ПЕР	СПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ ПРОИЗВОДСТВЕННЫХ КОТЕЛЬНЫХ114
	6.1	Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием
		возобновляемых источников энергии и местных видов топлива
	6.2	Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства
		тепловой энергии115
	6.3	Описание изменений в перспективных топливных балансах за период, предшествующий актуализации
		схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных
		источников тепловой энергии117
7.	ОЦЕ	НКА ЗНАЧЕНИЙ НОРМАТИВНЫХ ЗАПАСОВ ТОПЛИВА119
8.	СУМ	ІМАРНОЕ ПОТРЕБЛЕНИЕ ТОПЛИВА ЭНЕРГОИСТОЧНИКАМИ Г.ОМСКА120
	8.1	Преобладающий в городе Омске вид топлива, определяемый по совокупности всех систем
		теплоснабжения находящихся в городском округе 121

Перечень таблиц

Таблица 2.1	Перспективные значения потребления топлива ТЭЦ-3 АО «ТГК-11»	10
Таблица 2.2	Перспективные значения потребления топлива ТЭЦ-4 АО «ТГК-11»	11
Таблица 2.3	Перспективные значения потребления топлива ТЭЦ-5 АО «ТГК-11»	12
Таблица 2.4	Полезный отпуск АО «ТГК-11»	13
Таблица 2.5	Виды топлива, их доля и значение низшей теплоты сгорания	15
Таблица 2.6	Максимальные часовые расходы топлива	16
Таблица 3.1	Перспективные значения потребления топлива ТЭЦ-2 АО «Омск РТС»	19
	Перспективные значения потребления топлива КРК АО «Омск РТС»	
Таблица 3.3	Полезный отпуск АО «Омск РТС»	21
Таблица 3.4	Виды топлива, их доля и значение низшей теплоты сгорания	23
	Максимальные часовые расходы топлива	
Таблица 4.1	Структура топлива газовых котельных МП «Тепловая компания»	26
Таблица 4.2	Место поставки природного газа на газовые котельные МП «Тепловая	
	компания»	26
Таблица 4.3	Качество природного газа ГРС г.Омска, поставляемого на газовые котельные	
	МП «Тепловая компания»	
	Структура топлива угольных котельных МП «Тепловая компания»	
Таблица 4.5	Качество угля, поставляемого ООО «Омресурс» в январе 2020г	27
Таблица 4.6	Отпуск тепла, топливопотребление и средневзвешенные расходы топлива	
	котельных МП г.Омска «Тепловая компания»	
Таблица 4.7	. Перспективное потребление топлива МП г. Омска «Тепловая компания»	59
Таблица 4.8	. Перспективное потребление натурального топлива МП г. Омска «Тепловая	
	компания»	60
Таблица 4.9	. Расход условного топлива, используемого для производства тепловой	
	энергии в МП г. Омска «Тепловая компания»	60
Таблица 5.1	Структура топлива котельных теплоснабжающих организаций г. Омска	64
	Качество природного газа на газораспределительных станциях г. Омска	65
Таблица 5.3	Структура топлива угольных котельных Филиала ОАО «РЖД»-СП 3-СД по	
	тепловодоснабжению	65
Таблица 5.4	. Перспективные значения потребления топлива котельными	
	теплоснабжающих организаций	66
Таблица 5.5	. Перспективное потребление топлива теплоснабжающими котельными г.	
	Омска	110
Таблица 5.6	. Перспективное потребление топлива теплоснабжающими котельными г.	
	Омска	112
Таблица 5.7	. Расход условного топлива, используемого для производства тепловой	
	энергии котельными теплоснабжающих организаций г. Омска	112
Таблица 6.1	. Сводный топливный баланс производственных котельных г. Омска на весь	
	перспективный период до 2033 года	115
Таблица 6.2	. Общий расход топлива, используемого на производственных котельных г.	
	Омска на весь перспективный период до 2033 года	116
Таблица 6.4	. Топливопотребление природного газа, угля. Мазута. ДТ и прочего топлива	
	на производственных котельных г. Омска на весь перспективный период до	
	2033 года	116
Таблица 6.5	. Перспективное потребление условного топлива котельными г. Омска,	
	тыс.тут	
-	Прогноз нормативов создания запасов топлива до 2033 г.	119
таблица 8.1	Прогнозные значения потребления натурального топлива энергоисточниками	
	г. Омска в перспективе до 2033 года, тыс.тнт	121

Перечень рисунков

Рисунок 2.1 Отпуск тепловой энергии от энергоисточников АО «ТГК-11»	g
Рисунок 2.2 Отпуск электрической энергии от энергоисточников АО «ТГК-11»	
Рисунок 2.3 Расход топлива на отпуск тепловой и электрической энергии по	
энергоисточникам АО «ТГК-11»	13
Рисунок 3.1 Отпуск тепловой энергии от энергоисточников АО «Омск РТС»	18
Рисунок 3.2 Расход топлива на отпуск тепловой энергии по энергоисточникам АО «Омск	
PTC»,	21
Рисунок 4.1 Расход условного топлива и отпуск тепла от котельных МП г.Омска	
«Тепловая компания» по годам	60
Рисунок 5.1 - Расход условного топлива и отпуск тепла от теплоснабжающих котельных	
по годам	111
Рисунок 5.2 - Топливопотребление природного газа, угля и мазута на теплоснабжающих	
котельных г.Омска»	111
Рисунок 7.1 Отпуск тепла по энергоисточникам г. Омска до 2033 года	120
Рисунок 7.2 Прогнозные значения потребления условного топлива энергоисточниками г.	
Омска в перспективе до 2033 года.	120
Рисунок 7.3 Структура потребления топлива энергоисточниками г. Омска по видам	
топлива в 2019 и 2033 гг	122

ВВЕДЕНИЕ

Схема теплоснабжения города Омска была разработана с целью обеспечения надежного и качественного теплоснабжения потребителей с учетом прогноза градостроительного развития до 2033 года.

Схема теплоснабжения города Омска утверждена Приказом Минэнерго России №895 от 17.10.2018 года.

Схема теплоснабжения определила стратегию и единую политику перспективного развития централизованных систем теплоснабжения города.

Основной задачей схемы теплоснабжения является разработка перспективы развития системы теплоснабжения, обеспечивающей реализацию Генерального плана муниципального образования городской округ город Омск Омской области, определение необходимых мероприятий и затрат на решение выявленных проблем, реконструкцию и модернизацию тепловых сетей и энергоисточников.

Целями выполнения актуализации схемы теплоснабжения являются:

- учет предложений и замечаний, установленных по результатам экспертизы утвержденной схемы теплоснабжения и вынесенных на актуализацию;
- актуализация показателей схемы по фактическим данным за период с базового года утвержденной схемы;
- рассмотрение новых предложений, а также мониторинг и актуализация проектов,
 включенных в реестр проектов схемы теплоснабжения;
- мониторинг и актуализация тарифных последствий;
- актуализация границ зон деятельности утвержденных ЕТО.

Целями разработки перспективных топливных балансов являются:

- установление перспективных объемов тепловой энергии, вырабатываемой на всех источниках тепловой энергии, обеспечивающих спрос на тепловую энергию и теплоноситель для потребителей, на собственные нужды ТЭЦ, котельных, на потери тепловой энергии при ее передаче по тепловым сетям, на хозяйственные нужды предприятий;
- установление объемов топлива для обеспечения выработки электрической и тепловой энергии на каждом источнике тепловой энергии;
- определены виды топлива, обеспечивающего выработку необходимой электрической и тепловой энергии;
 - установление показателей эффективности использования топлива.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Перспективные топливные балансы разработаны в соответствии пунктом 70 Требований к схемам теплоснабжения.

В результате разработки в соответствии с пунктом 70 Требований к схеме теплоснабжения должны быть решены следующие задачи:

- установлены перспективные объемы тепловой энергии, вырабатываемой на всех источниках тепловой энергии, обеспечивающие спрос на тепловую энергию и теплоноситель для потребителей, на собственные нужды котельных, на потери тепловой энергии при ее передаче по тепловым сетям, на хозяйственные нужды предприятий;
- установлены объемы топлива для обеспечения выработки тепловой энергии на каждом источнике тепловой энергии;
 - определены виды топлива, обеспечивающие выработку необходимой тепловой энергии;
- установлены показатели эффективности использования топлива и предлагаемого к использованию теплоэнергетического оборудования.

Для расчета выработки электрической и тепловой энергии потребления топлива на энергоисточников были приняты следующие условия:

- Перспективная выработка электрической энергии рассчитывалась на основании прогнозов АО «ТГК-11»:
- Выработка электроэнергии в теплофикационном цикле паротурбинных турбоагрегатов будет максимально-возможной, определяемой их энергетическими характеристиками;
- Для расчета перспективного отпуска тепловой энергии принимались значения перспективной тепловой нагрузки в зоне действия источника тепловой энергии, приведенные в Главе 7 «Предложения по строительству, реконструкции, техническому перевооружению и (или) модернизации источников тепловой энергии» Обосновывающих материалов к схеме теплоснабжения г. Омска до 2033 г. (52401.ОМ-ПСТ.007.000) с учетом фактического теплопотребления.

Удельные значения расходов топлива на выработку электрической и тепловой энергии для вновь вводимого оборудования принимался в соответствии с номинальными характеристиками этого оборудования при работе на конкретном виде топлива.

2. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ ЭНЕРГОИСТОЧНИКОВ АО «ТГК-11»

Результаты расчетов перспективных значений выработки и отпуска электрической и тепловой энергии, перспективные значения удельных расходов топлива на отпуск электрической и тепловой энергии, перспективные значения потребления топлива на отпуск тепловой и электрической энергии энергоисточников АО «ТГК-11» (ТЭЦ-3, ТЭЦ-4, ТЭЦ-5) приведены в таблицах 2.1 – 2.3. Также в таблицах приведен расчет максимально-часового топливопотребления для каждого периода рассмотрения схемы теплоснабжения.

Перспективные и фактические значения отпуска тепловой и электрической энергии от энергоисточников АО «ТГК-11», при которых рассчитывался перспективный баланс топлива, представлены на рисунках 2.1 и 2.2.

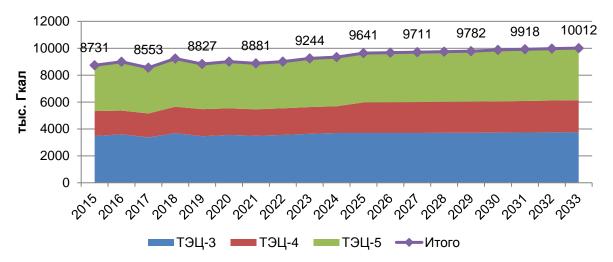


Рисунок 2.1 Отпуск тепловой энергии от энергоисточников АО «ТГК-11»

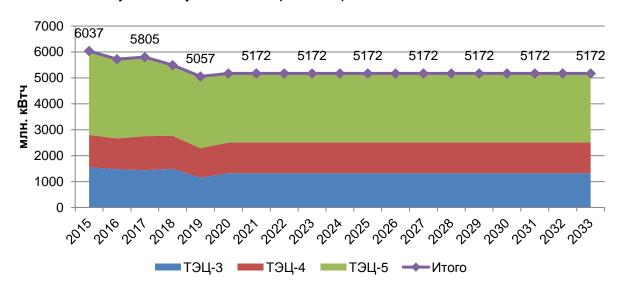


Рисунок 2.2 Отпуск электрической энергии от энергоисточников АО «ТГК-11»

Ниже представлены фактические и перспективные значения потребления топлива, удельных расходов топлива на отпуск тепловой энергии от каждого энергоисточника АО «ТГК-11».

Таблица 2.1 Перспективные значения потребления топлива ТЭЦ-3 AO «ТГК-11»

таолица 2.1 перспективные значен																			
ТЭЦ-3 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Установленная электрическая																			
мощность оборудования, МВт	400,20	400,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20	445,20
Установленная тепловая мощ-	447074	4470 74	4000 04	4000 04	4000.04	4000.04	4400.04	4400.04	4400.04	4400.04	4400.04	4000.04	4000.04	4000.04	4000 04	4000 04	1000 01	4000.04	1000 04
ность оборудования, Гкал/ч	1170,74	1170,74	1006,24	1006,24	1006,24	1006,24	1132,24	1132,24	1132,24	1132,24	1132,24	1232,24	1232,24	1232,24	1232,24	1232,24	1232,24	1232,24	1232,24
отборы паровых турбин,	4400 74	4400 74	045.04	045.04	045.04	045.04	045.04	045.04	045.04	245.04	045.04	045.04	045.04	045.04	045.04	0.45.04	045.04	045.04	0.45.0.4
Гкал/ч	1109,74	1109,74	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24	815,24
РОУ, Гкал/ч	61,00	61,00	191,00	191,00	191,00	191,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00	317,00
ПВК, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00	100,00
Присоединенная тепловая	222,00	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60	173,60
нагрузка в паре, Гкал/ч	222,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00	173,00
Присоединенная договорная	051 21	045.07	040.25	052.04	050 10	960.03	ຍດລ ລວ	002.20	927,81	045 10	046.30	047.27	049.47	040 56	950,65	053.50	056.36	050.21	062.06
нагрузка в горячей воде, Гкал/ч	851,31	845,97	848,35	853,84	858,18	869,93	892,32	903,29	927,81	945,19	946,28	947,37	948,47	949,56	950,65	953,50	956,36	959,21	962,06
Присоединенная расчетная																			
нагрузка в горячей воде, Гкал/ч	851,31	845,97	848,35	853,84	755,20	766,95	789,33	800,31	824,82	842,20	843,30	844,39	845,48	846,58	847,67	850,52	853,37	856,23	859,08
Выработка эл.энергии, млн.кВтч	1780,51	1698,58	1662,08	1721,90	1361,02	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27	1538,27
Отпуск эл.энергии с шин,	1700,51	1090,30	1002,00	1721,90	1301,02	1330,27	1330,27	1330,27	1330,21	1330,21	1550,27	1330,21	1550,27	1550,21	1330,21	1330,27	1330,21	1330,21	1330,27
млн.кВтч	1555,61	1471,92	1439,03	1491,69	1153,08	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50	1321,50
Отпуск теплоэнергии с коллек-	1333,01	1471,92	1439,03	1491,09	1133,00	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30	1321,30
торов, тыс.Гкал	3471,63	3605,55	3370,89	3686,52	3465,13	3552,23	3502,32	3552,23	3635,58	3694,67	3698,39	3702,11	3705,82	3709,54	3713,25	3722,95	3732,65	3742,35	3752,04
Отпуск теплоэнергии из отборов	347 1,03	3003,33	3370,03	3000,32	3403,13	0002,20	3302,32	0002,20	3033,30	3034,07	5050,55	3702,11	3703,02	3703,34	37 13,23	3722,33	3732,03	3742,00	3732,04
турбоагрегатов, тыс.Гкал					2910,92	2648,80	2770,74	2678,67	2689,15	2690,99	2692,24	2692,32	2692,40	2692,48	2692,55	2692,63	2692,83	2693,03	2693,23
Отпуск теплоэнергии с паром,					2010,02	20 10,00	2770,71	2010,01	2000,10	2000,00	2002,21	2002,02	2002, 10	2002, 10	2002,00	2002,00	2002,00	2000,00	2000,20
тыс.Гкал	1058,61	1118,41	1013,12	1119,65	1056,64	1118,91	1111,43	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91	1118,91
Отпуск теплоэнергии с горячей	1000,01		1010,12	1110,00	1000,01	,	,	1110,01	1110,01	,	,	1110,01	1110,01	1110,01	,	,			1110,01
водой, тыс.Гкал	2413,02	2487,14	2357,77	2566,88	2408,49	2433,32	2390,89	2433,32	2516,67	2575,76	2579,48	2583,19	2586,91	2590,63	2594,34	2604,04	2613,74	2623,44	2633,13
Коэффициент использования	-,-	- ,	,	,		, -		/ -			, -		, -			, ,	,		,
установленной электрической																			
мощности, %	50,8	48,3	42,6	44,2	34,9	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4	39,4
Коэффициент использования		-	_	-		-	-		-		-	-	-	-		-	-		-
установленной тепловой мощ-																			
ности, %	33,9	35,1	38,2	41,8	39,3	40,3	35,8	35,8	36,7	37,3	37,3	34,3	34,3	34,4	34,4	34,5	34,6	34,7	34,8
Число часов использования																			
установленной электрической																			
мощности, ч	4449	4244	3733	3868	3057	3455	3455	3455	3455	3455	3455	3455	3455	3455	3455	3455	3455	3455	3455
Число часов использования																			
установленной тепловой мощ-																			
ности, ч	2965	3080	3350	3664	3444	3530	3137	3137	3211	3263	3266	3004	3007	3010	3013	3021	3029	3037	3045
УРУТ на отпуск электроэнергии,																			
г/кВтч	352,50	364,76	347,9	337,6	334,9	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4	333,4
УРУТ на отпуск теплоэнергии,								_											
кг/Гкал	145,20	145,30	146,6	146,5	146,7	146,9	146,9	146,9	146,74	146,64	146,64	146,63	146,63	146,62	146,62	146,60	146,59	146,58	146,56
Расход условного топлива, тут	1052437	1060788	994847	1043800	894563	962442	962442	962442	974151	982443	982972	983501	984029	984558	985086	986455	987824	989193	990560
Расход топлива на электро-																			
энергию, тут	548356	536902	500675	503550	386203	440652	440652	440652	440652	440652	440652	440652	440652	440652	440652	440652	440652	440652	440652
Расход топлива на тепло, тут	504081	523886	494172	540250	508360	521790	521790	521790	533499	541791	542320	542849	543377	543906	544434	545803	547172	548541	549908
Расход угля, тут	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Расход газа, тут	1050801	1059071	993367	1042580	893308	960692	959670	959670	971379	979671	980200	980729	981257	981786	982314	983683	985052	986421	987788
Расход мазута, тут	1636	1717	1480	1220	1255	1750	2772	2772	2772	2772	2772	2772	2772	2772	2772	2772	2772	2772	2772
Натуральное топливо																			
Расход угля, тыс.т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Расход газа, млн.м ³	897	903	850	891	762	840	840	840	850	857	858	858	859	859	860	861	862	863	864
Расход мазута, тыс.т	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2

52401.ОМ-ПСТ.010.000 10

Таблица 2.2 Перспективные значения потребления топлива ТЭЦ-4 AO «ТГК-11»

ТЭЦ-4 АО "ТГК-11"	я потреолен 2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Установленная электрическая																			
мощность оборудования, МВт	385	385	385	385	385	385	385	385	385	385	385	385	385	385	385	385	385	385	385
Установленная тепловая мощ-																			
ность оборудования, Гкал/ч	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00	900,00
отборы паровых турбин,																			
Гкал/ч	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00	804,00
РОУ, Гкал/ч	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00	96,00
ПВК, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Присоединенная тепловая	295,00	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30	286,30
нагрузка в паре, Гкал/ч	233,00	200,30	280,30	200,30	280,30	280,30	200,30	200,30	200,30	280,30	200,30	280,30	280,30	200,30	280,30	280,30	200,30	280,30	280,30
Присоединенная договорная	244.06	244.42	250.20	244.24	242.04	24467	246.46	246.46	240.25	240.05	206.20	200.00	202.00	206 27	200 56	24442	240.24	22440	220.06
нагрузка в горячей воде, Гкал/ч	241,06	241,12	258,38	211,34	213,94	214,67	216,16	216,16	218,35	219,05	296,39	299,69	302,98	306,27	309,56	314,43	319,31	324,19	329,06
Присоединенная расчетная																			
нагрузка в горячей воде, Гкал/ч	241,06	241,12	258,38	211,34	213,94	214,67	216,16	216,16	218,35	219,05	296,39	299,69	302,98	306,27	309,56	314,43	319,31	324,19	329,06
Выработка эл.энергии, млн.кВтч	1462,38	1400,43	1527,30	1497,33	1334,14	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95	1396,95
Отпуск эл.энергии с шин,	1402,30	1400,43	1527,30	1497,33	1334,14	1390,93	1390,93	1390,93	1390,95	1390,95	1390,93	1390,93	1390,93	1390,93	1390,93	1390,93	1390,93	1390,93	1390,93
млн.кВтч	1244,62	1192,63	1310,35	1274,76	1133,30	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17	1184,17
Отпуск теплоэнергии с коллек-	1244,02	1192,03	1310,33	1274,70	1133,30	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17	1104,17
торов, тыс.Гкал	1863,97	1760,53	1779,31	1960,93	2002,13	1981,40	1963,59	1981,40	1989,28	1991,81	2270,24	2282,09	2293,93	2305,78	2317,62	2335,18	2352,74	2370,29	2387,85
Отпуск теплоэнергии из отборов	1000,07	1700,00	1775,01	1000,00	2002,10	1001,40	1000,00	1001,40	1000,20	1001,01	2210,24	2202,00	2200,00	2000,70	2017,02	2000,10	2002,14	2070,20	2007,00
турбоагрегатов, тыс.Гкал					1695,63	1739,09	1704,00	1688,68	1704,00	1718,74	1728,89	1979,65	1999,11	2018,66	2038,31	2058,05	2082,98	2108,05	2133,26
Отпуск теплоэнергии с паром,					1000,00	1100,00		1000,00	1101,00	11 10,7 1	1120,00	10.0,00	1000,11	2010,00	2000,01	2000,00	2002,00	2100,00	2.00,20
тыс.Гкал	1448,67	1333,62	1385,67	1527,16	1603,25	1556,66	1546,26	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66	1556,66
Отпуск теплоэнергии с горячей		,	,,,,,,,	,		,,,,,,	,		,	,						,		,	
водой, тыс.Гкал	415,30	426,92	393,64	433,77	398,88	424,74	417,33	424,74	432,61	435,15	713,58	725,42	737,27	749,11	760,96	778,52	796,07	813,63	831,19
Коэффициент использования	,	Í	,	ŕ			,	,	,		,			,		,	,		
установленной электрической																			
мощности, %	43,4	41,4	45,3	44,4	39,6	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4	41,4
Коэффициент использования																			
установленной тепловой мощ-																			
ности, %	23,6	22,3	22,6	24,9	25,4	25,1	25,1	25,1	25,2	25,3	28,8	28,9	29,1	29,2	29,4	29,6	29,8	30,1	30,3
Число часов использования																			
установленной электрической																			
мощности, ч	3798	3637	3967	3889	3465	3628	3628	3628	3628	3628	3628	3628	3628	3628	3628	3628	3628	3628	3628
Число часов использования																			
установленной тепловой мощ-	0074	4050	4077	0470	0005	0000	0000	0000	0040	0040	0500	0500	0540	0500	0575	0505	004.4	0004	0050
HOCTU, Ч	2071	1956	1977	2179	2225	2202	2202	2202	2210	2213	2522	2536	2549	2562	2575	2595	2614	2634	2653
УРУТ на отпуск электроэнергии, г/кВтч	487,9	436,2	425,8	414,0	407,5	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2
УРУТ на отпуск теплоэнергии,	407,9	430,2	425,6	414,0	407,5	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2	410,2
кг/Гкал	163,7	163,3	162,8	162,3	162,3	162,4	162,4	162,4	162,32	162,24	161,43	160,62	159,81	158,99	158,18	158,09	157,99	157,90	157,80
Расход условного топлива, тут	912353	807785	847686	845944	786676	807470	807470	807470	808588	808838	852169	852229	852271	852293	852297	854851	857402	859950	
Расход топлива на электро-	912000	001103	047000	043344	700070	007470	007470	001410	000300	000000	002100	032223	032271	032233	032231	004001	037402	009900	002434
энергию, тут	607241	520290	558008	527714	461778	485687	485687	485687	485687	485687	485687	485687	485687	485687	485687	485687	485687	485687	485687
Расход топлива на тепло, тут	305112	287495	289678	318230	324898	321783	321783	321783	322901	323151	366482	366542	366584	366606	366610	369164	371715	374263	
Расход угля, тут	772584	678473	805409	830886	759762	778850	778850	778850	780239	780482	822556	822615	822655	822677	822680	825160	827637	830111	832582
Расход газа, тут	130873	120837	37298	10132	23162	23720	23720	23720	23449	23456	24713	24715	24716	24717	24717	24791	24865	24939	25012
Расход мазута, тут	8896	8475	4979	4926	3752	4900	4900	4900	4900	4900	4900	4900	4900	4900	4900	4900	4900	4900	
Натуральное топливо	3000	3173	1010	1020	3102	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Расход угля, тыс.т	1384	1211	1423	1477	1342	1391	1391	1391	1393	1394	1469	1469	1469	1469	1469	1474	1478	1482	1487
Расход ули, пыс.т	112	102	32	8	19	20	20	20	20	20	21	21	21	21	21	21	21	21	
Расход назута, тыс.т	6	6	4	4	3	4		4		4			4			4	4		

Таблица 2.3 Перспективные значения потребления топлива ТЭЦ-5 AO «ТГК-11»

Таблица 2.3 Перспективные значени	2015		2017		2040	2020	2021	2022	2022	2024	2025	2020	2027	2020	2020	2020	2024	2022	2022
ТЭЦ-5 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Установленная электрическая мощность оборудования, МВт	735	735	735	735	735	735	735	735	735	735	735	735	735	735	735	735	735	735	735
Установленная тепловая мощ-	735	733	735	735	733	735	733	735	733	733	733	733	733	733	735	735	733	733	733
ность оборудования, Гкал/ч	1735,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00	1763,00
отборы паровых турбин,	1733,00	1705,00	1705,00	1705,00	1705,00	1705,00	1703,00	1705,00	1705,00	1705,00	1705,00	1703,00	1705,00	1703,00	1703,00	1703,00	1705,00	1705,00	1705,00
Гкал/ч	1100,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00	1128,00
РОУ, Гкал/ч	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00	95,00
ПВК, Гкал/ч	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00	540,00
Присоединенная тепловая	0.10,00	Í	ĺ	,	·	,	·	Í	•	·	0 10,00	·	,	·	•	0.10,00	•	ĺ	
•	4,50	4,50	4,50	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
нагрузка в паре, Гкал/ч																			
Присоединенная договорная	1314,47	1312,27	1312,53	1313,23	1332,16	1360,13	1376,04	1412,44	1469,82	1482,99	1490,89	1498,79	1506,69	1514,59	1522,44	1547,30	1555,15	1563,00	1570,85
нагрузка в горячей воде, Гкал/ч	,		,	,	,	,	,	,	,	,	,	,	,	,		,	,	,	
Присоединенная расчетная	1314,47	1312,27	1312,53	1313,23	1052,40	1080,38	1096,29	1132,68	1190,06	1203,23	1211,14	1219,04	1226,94	1234,84	1242,69	1267,54	1275,39	1283,24	1291,09
нагрузка в горячей воде, Гкал/ч	1314,47	1312,27	1312,33	1313,23	1032,40	1000,30	1030,23	1132,08	1130,00	1203,23	1211,14	1213,04	1220,54	1234,64	1242,03	1207,34	1273,33	1203,24	1231,03
Выработка эл.энергии, млн.кВтч	3751,74	3559,15	3554,94	3205,14	3221,83	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52	3133,52
Отпуск эл.энергии с шин,																			
млн.кВтч	3237,15	3057,81	3055,19	2728,67	2770,14	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04	2666,04
Отпуск теплоэнергии с коллек-																			
торов, тыс.Гкал	3395,42	3630,04	3403,02	3584,56	3359,66	3475,99	3415,38	3475,99	3619,44	3652,36	3672,12	3691,87	3711,63	3731,38	3751,01	3813,14	3832,77	3852,39	3872,02
Отпуск теплоэнергии из отборов																			
турбоагрегатов, тыс.Гкал					3243,79	3138,94	3232,67	3176,31	3232,67	3373,32	3411,31	3437,10	3462,98	3488,93	3514,96	3540,95	3607,23	3633,46	3659,77
Отпуск теплоэнергии с паром,																			
тыс.Гкал	22,34	8,92	4,66	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Отпуск теплоэнергии с горячей													0=44.00	0=04.00					
водой, тыс.Гкал	3373,08	3621,11	3398,36	3584,56	3359,66	3475,99	3415,38	3475,99	3619,44	3652,36	3672,12	3691,87	3711,63	3731,38	3751,01	3813,14	3832,77	3852,39	3872,02
Коэффициент использования																			
установленной электрической	50.0	FF 4	55.0	40.0	50.0	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7	40.7
мощности, %	58,3	55,1	55,2	49,8	50,0	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7	48,7
Коэффициент использования установленной тепловой мощ-																			
ности, %	22,3	23,4	22,0	23,2	21,8	22,5	22,5	22,5	23,4	23,6	23,8	23,9	24,0	24,2	24,3	24,7	24,8	24,9	25,1
Число часов использования	22,3	20,4	22,0	20,2	21,0	22,5	22,0	22,5	20,4	25,0	23,0	25,5	24,0	24,2	24,5	24,1	24,0	24,3	20,1
установленной электрической																			
мощности, ч	5104	4842	4837	4361	4383	4263	4263	4263	4263	4263	4263	4263	4263	4263	4263	4263	4263	4263	4263
Число часов использования	0104	7072	4007	4001	4000	7200	4200	4200	7200	4200	4200	4200	4200	4200	4200	4200	7200	4200	7200
установленной тепловой мощ-																			
ности, ч	1957	2059	1930	2033	1906	1972	1972	1972	2053	2072	2083	2094	2105	2116	2128	2163	2174	2185	2196
УРУТ на отпуск электроэнергии,										-									
г/кВтч	379,9	361,5	363,4	351,0	346,5	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2	348,2
УРУТ на отпуск теплоэнергии,	,	,			,		,	,	•			,		,	,	,	•		
кг/Гкал	142,7	142,7	142,7	142,5	142,6	142,5	142,5	142,5	142,43	142,34	142,34	142,34	142,34	142,34	142,34	142,32	142,31	142,31	142,31
Расход условного топлива, тут	1714319	1623404	1595958	1468508	1439081	1423609	1423609	1423609	1443808	1448163	1450955	1453767	1456579	1459390	1462184	1470966	1473697	1476490	1479282
Расход топлива на электро-																			
энергию, тут	1229792	1105398	1110360	957816	959833	928273	928273	928273	928273	928273	928273	928273	928273	928273	928273	928273	928273	928273	928273
Расход топлива на тепло, тут	484526	518006	485598	510692	479248	495336	495336		515535	519890	522682	525494	528306	531117	533911	542693	545424	548217	551009
Расход угля, тут	1705938	1603690	1578128	1455992	1430154	1413249		1413249	1433448	1437803	1440595	1443407	1446219	1449030	1451824	1460606	1463337	1466130	
Расход газа, тут	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
Расход мазута, тут	8381	19714	17829	12517	8927	10360	10360	10360	10360	10360	10360	10360	10360	10360	10360	10360	10360	10360	10360
Натуральное топливо																			
Расход угля, тыс.т	3059	2903	2818	2620	2558	2524	2524	2524	2560	2568	2572	2578	2583	2588	2593	2608	2613	2618	
Расход газа, млн.м ³	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	
Расход мазута, тыс.т	6	15	14	10	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7

На рисунке (2.3) представлены перспективные значения потребления топлива энергоисточников АО «ТГК-11» на отпуск тепловой и электрической энергии.

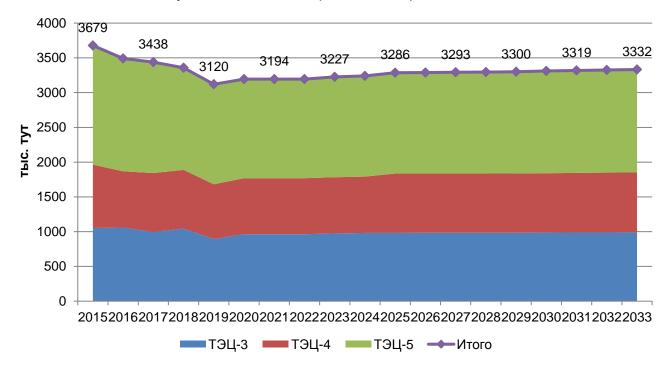


Рисунок 2.3 Расход топлива на отпуск тепловой и электрической энергии по энергоисточникам АО «ТГК-11»

Расход топлива в целом по АО «ТГК-11» за рассматриваемый период изменяется незначительно. В целом за рассматриваемый период потребление топлива в 2033 г. по отношению к 2019 г. увеличится на 7,5 %, отпуск тепла — на 14,0 %, отпуск электрической энергии на 2,3 %.

По данным АО «ТГК-11» полезный отпуск частично реализуется конечным потребителям, а частично реализуется АО "Омск РТС". Значения полезного отпуска АО «ТГК-11» представлены в таблице ниже.

Таблица 2.4 Полезный отпуск АО «ТГК-11»

AO «TΓK-11»	2019 факт	6 мес. 2020 факт	2020 ожид	2021	2022	2023	2024	2029	2033
Полезный отпуск тепловой энер-гии, тыс. Гкал	8 804	4 351	8 741	8 858	8 858	8 858	8 858	8 858	8 858
в т.ч. в паре	2 660	1 336	2 647	2 658	2 658	2 658	2 658	2 658	2 658
в т.ч. в горячей воде	6 144	3 015	6 094	6 201	6 201	6 201	6 201	6 201	6 201
Полезный отпуск конечным потре- бителям	2 655	1 334	2 641	2 647	2 647	2 647	2 647	2 647	2 647
в т.ч. в паре	2 650	1 331	2 635	2 641	2 641	2 641	2 641	2 641	2 641
в т.ч. в горячей воде	5	3	5	6	6	6	6	6	6
Полезный отпуск АО Омск РТС	6 149	3 017	6 100	6 211	6 211	6 211	6 211	6 211	6 211
в т.ч. в паре	10	5	12	16	16	16	16	16	16
в т.ч. в горячей воде	6 139	3 012	6 088	6 195	6 195	6 195	6 195	6 195	6 195

2.1 Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием возобновляемых источников энергии и местных видов топлива

<u>ТЭЦ-3</u>

Основное топливо газ - месторождение Комсомольско - Богандинское, резервное топливо - мазут топочный ТКМ-16.

Газ на газораспределительный пункт ТЭЦ-3 подается по надземному газопроводу от ГРС-1 ЗАО «Газпром межрегионгаз Омск». После ГРП газ поступает на сжигание в котлоагрегаты типа ТП-230-2 ст. № 4 ÷ 10 I очереди и котлоагрегаты типа ТП-82 ст. № 11÷14 II очереди. При отсутствии или недостатке газа станция сжигает мазут. Мазут подается периодически с территории расположенного рядом ОАО «Газпромнефть-ОНПЗ» на мазутохозяйство ТЭЦ-3 по двум подземным мазутопроводам.

<u>ТЭЦ-4</u>

Основным топливом для станции является каменный уголь Экибастузского месторождения. Основное топливо (каменный уголь) ТЭЦ-4 получает железнодорожными маршрутами.

С 2004 года начато сжигание природного газа ГОСТ 5542-87 на котле ст.№ 7. Природный газ поступает на ГРП ТЭЦ от магистрального газопровода, идущего от газораспределительной станции ГРС-1, поставщика ОАО «Межрегионгаз». Газорегуляторный пункт (ГРП) предназначен для снижения давления и поддержания на заданных параметрах газа.

Растопочное топливо – мазут марки ТКМ-16. Мазут подается по мазутопроводу от ОАО "Газпромнефть-ОНПЗ".

Поставка твердого топлива производится по контрактам, жидкого - по договору. Максимальная проектная часовая подача угля 1000 т/ч.

Для приемки влажного угля, склонного к смерзанию в холодное время, смонтировано размораживающее устройство типа «Инфрасиб».

<u>ТЭЦ-5</u>

На электростанции используется в качестве основного топлива экибастузский каменный уголь марки КСНр — 300, поставляемый железнодорожным транспортом. Резервного топлива нет. В качестве растопочного используется мазут марки ТКМ — 16, который используется также при необходимости как основное топливо на к.а. ПТВМ-180 и к.а. ДЕ-25-14ГМ. Доля сжигаемого мазута в общем объеме топлива составляет 0.4 - 0.5 %. Мазут подается железнодорожным транспортом от ОАО "Газпромнефть-ОНПЗ".

Для приемки влажного угля, склонного к смерзанию в холодное время, смонтировано размораживающее устройство типа «Инфрасиб».

2.2 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии

Виды топлива, их доля и значение низшей теплоты сгорания по источникам АО «ТГК-11» приведены в Таблица 2.5.

Таблица 2.5 Виды топлива, их доля и значение низшей теплоты сгорания

ТЭЦ-3 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Расход угля, тыс.т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Низшая теплота сгорания, ккал/кг	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Доля топлива, %	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Расход газа, млн.м3	897	903	850	891	762	840	840	840	850	857	858	858	859	859	860	861	862	863	864
Низшая теплота сгорания,																			
ккал/м ³	8201	8210	8180	8193	8207	8003	7994	7994	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000
Доля топлива, %	99,8%	99,8%	99,9%	99,9%	99,9%	99,8%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%	99,7%
Расход мазута, тыс.т	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2
Низшая теплота сгорания, ккал/кг	9852	9802	9764	9782	9761	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800
Доля топлива, %	0,2%	0,2%	0,1%	0,1%	0,1%	0,2%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%	0,3%
ТЭЦ-4 AO "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
•	1384	1211	1423	1477	1342	1391	1391	1391	1393	1394	1469	1469	1469	1469	1469	1474	1478	1482	1487
Расход угля, тыс.т Низшая теплота сгорания,	1304	1211	1423	1477	1342	1391	1391	1391	1393	1394	1409	1409	1469	1409	1469	1474	1470	1402	1407
ккал/кг	3908	3922	3961	3938	3963	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920
Доля топлива, %	84,7%	84,0%	95,0%	98,2%	96,6%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%	96,5%
Расход газа, млн.м3	112	102	32	8	19	20	20	20	20	20	21	21	21	21	21	21	21	21	21
Низшая теплота сгорания,																			
ккал/м ³	8214	8308	8087	8442	8410	8302	8302	8302	8302	8302	8302	8302	8302	8302	8302	8302	8302	8302	8302
Доля топлива, %	14,3%	15,0%	4,4%	1,2%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%	2,9%
Расход мазута, тыс.т	6	6	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Низшая теплота сгорания, ккал/кг	9779	9722	9736	9754	9782	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800
Доля топлива, %	1,0%	1,0%	0,6%	0,6%	0,5%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%	0,6%
ТЭЦ-5 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Расход угля, тыс.т	3059	2903	2818	2620	2558	2524	2524	2524	2560	2568	2572	2578	2583	2588	2593	2608	2613	2618	2623
Низшая теплота сгорания, ккал/кг	3904	3867	3920	3890	3914	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920	3920
Доля топлива, %	99,5%	98,8%	98,9%	99,1%	99,4%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%	99,3%
Расход газа, млн.м3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Низшая теплота сгорания, ккал/м ³	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
Доля топлива, %	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Расход мазута, тыс.т	6	15	14	10	8	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Низшая теплота сгорания,																			
ккал/кг	9069	9348	9159	8356	7709	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800	9800
Доля топлива, %	0,5%	1,2%	1,1%	0,9%	0,6%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%	0,7%
ΑΟ "ΤΓΚ-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Расход угля, тыс.т	4443	4114	4242	4097	3900	3914	3914	3914	3953	3961	4041	4046	4052	4057	4062	4082	4091	4100	4110
Расход газа, млн.м3	1008	1005	882	899	781	860	860	860	870	877	879	879	879	880	880	882	883	884	886
Расход мазута, тыс.т	14	22	18	15	12	12	13	13	13	13	13	13	13	13	13	13	13	13	13

Таблица 2.6 Максимальные часовые расходы топлива

Taomiqu 2.0 makommanbible lacobbik	- hanvelle:																		
ТЭЦ-3 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Максимальный расход топлива																			1
в ОЗП, тут/ч	264,68	268,90	279,26	275,39	274,99	276,24	273,22	281,14	284,60	287,06	287,21	287,37	287,52	287,68	287,84	288,24	288,64	289,05	289,45
Максимальный расход топлива																			1
в переходный период, тут/ч	175,61	179,67	189,23	184,71	182,64	182,41	192,27	183,57	184,26	184,76	184,79	184,82	184,85	184,88	184,91	185,01	185,10	185,19	185,28
Максимальный расход топлива																			.
в летнем режиме, тут/ч	152,86	156,88	166,24	161,56	159,06	158,45	171,60	158,66	158,65	158,64	158,64	158,64	158,64	158,64	158,64	158,65	158,66	158,67	158,68
ТЭЦ-4 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Максимальный расход топлива																			
в ОЗП, тут/ч	227,30	207,31	206,02	193,68	191,59	192,77	193,01	193,01	193,35	193,45	205,75	206,04	206,33	206,60	206,87	207,62	208,36	209,10	209,84
Максимальный расход топлива																			1
в переходный период, тут/ч	221,99	201,76	200,43	188,02	185,67	186,75	166,17	186,94	187,00	187,00	189,41	189,35	189,30	189,25	189,20	189,33	189,47	189,61	189,75
Максимальный расход топлива																			1
в летнем режиме, тут/ч	220,63	200,34	199,00	186,58	184,15	185,21	159,32	185,39	185,37	185,36	185,23	185,09	184,96	184,82	184,68	184,67	184,65	184,63	184,62
ТЭЦ-5 АО "ТГК-11"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Максимальный расход топлива																			
в ОЗП, тут/ч	466,80	452,96	454,42	445,12	444,64	449,74	452,00	457,19	465,27	467,01	468,13	469,25	470,37	471,50	472,62	476,13	477,22	478,34	479,46
Максимальный расход топлива																			
в переходный период, тут/ч	332,02	322,83	320,46	310,86	313,68	316,17	317,64	320,14	321,77	322,25	322,45	322,65	322,86	323,06	323,27	323,98	324,20	324,42	324,65
Максимальный расход топлива																			
в летнем режиме, тут/ч	297,61	289,61	286,26	276,58	280,25	282,06	283,34	285,15	285,14	285,29	285,26	285,22	285,19	285,16	285,13	285,13	285,13	285,13	285,13

2.3 Описание изменений в перспективных топливных балансах за период, предшествующий актуализации схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных источников тепловой энергии

Значения в перспективных топливных запасах скорректированы с учетом изменения тепловых нагрузок, величины прогнозного отпуска, изменения прогнозных сроков переключения тепловой нагрузки от котельных, планируемых мероприятий и сроков их реализации.

3. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ ЭНЕРГОИСТОЧНИКОВ АО «ОМСК РТС»

Результаты расчетов перспективных значений выработки и отпуска электрической и тепловой энергии, перспективные значения удельных расходов топлива на отпуск электрической и тепловой энергии, перспективные значения потребления топлива на отпуск тепловой и электрической энергии энергоисточников АО «Омск РТС» (ТЭЦ-2, КРК) приведены в таблицах 3.1 и 3.2. Также в таблицах приведен расчет максимально-часового топливопотребления для каждого периода рассмотрения схемы теплоснабжения.

Перспективные и фактические значения отпуска тепловой энергии от энергоисточников АО «Омск РТС», при которых рассчитывался перспективный баланс топлива, представлен на рисунке 3.1.

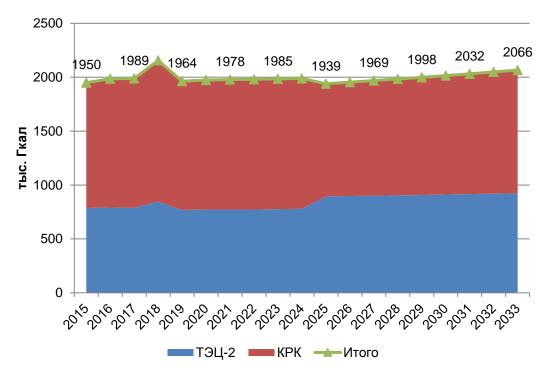


Рисунок 3.1 Отпуск тепловой энергии от энергоисточников АО «Омск РТС»

Ниже представлены фактические и перспективные значения потребления топлива, удельных расходов топлива на отпуск тепловой энергии от каждого энергоисточника АО «Омск РТС».

Таблица 3.1 Перспективные значения потребления топлива ТЭЦ-2 AO «Омск РТС»

ТЭЦ-2 АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Установленная тепловая мощ- ность оборудования. Гкал/ч	378	378	378	378	378	378	378	378	378	378	378	478	478	478	478	478	478	478	478
Присоединенная тепловая нагрузка в паре, Гкал/ч	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Присоединенная договорная нагрузка в горячей воде, Гкал/ч	315,64	307,30	311,27	313,10	308,29	313,11	316,32	320,02	319,86	320,28	366,52	367,86	369,19	370,52	371,85	373,39	374,93	376,47	378,01
Присоединенная расчетная нагрузка в горячей воде, Гкал/ч	315,64	307,30	311,27	313,10	268,21	273,04	276,24	279,95	279,79	280,20	326,45	327,78	329,11	330,44	331,77	333,31	334,85	336,39	337,93
Отпуск теплоэнергии с коллекторов, тыс.Гкал	786,56	791,33	788,43	846,67	768,90	771,77	771,77	771,69	777,19	778,88	894,50	897,83	901,15	904,48	907,81	911,66	915,51	919,36	923,22
Отпуск теплоэнергии с паром, тыс.Гкал	11,30	9,92	7,13	4,60	4,27	4,61	4,61	4,52	4,60	4,60	4,60	4,60	4,60	4,60	4,60	4,60	4,60	4,60	4,60
Отпуск теплоэнергии с горячей водой, тыс.Гкал	775,27	781,41	781,30	842,06	764,63	767,17	767,17	767,17	772,59	774,27	889,89	893,22	896,55	899,87	903,20	907,05	910,91	914,76	918,61
Коэффициент использования установленной тепловой мощ- ности, %	23,8	23,8	23,8	25,6	23,2	23,3	23,3	23,3	23,5	23,5	27,0	21,4	21,5	21,6	21,7	21,8	21,9	22,0	22,0
Число часов использования установленной тепловой мощ- ности, ч	2081	2093	2086	2240	2034	2042	2042	2042	2056	2061	2366	1878	1885	1892	1899	1907	1915	1923	1931
УРУТ на отпуск теплоэнергии, кг/Гкал	156,3	156,2	154,6	154,9	152,8	156,3	156,3	156,3	156,3	156,4	156,29	156,29	156,29	156,28	156,28	156,28	156,28	156,28	156,27
Расход условного топлива, тут	122940	123609	121920	131148	117467	120644	120643	120630	121507	121778	139801	140320	140838	141356	141874	142474	143075	143675	144275
Расход топлива на тепло, тут	122940	123609	121920	131148	117467	120644	120643	120630	121507	121778	139801	140320	140838	141356	141874	142474	143075	143675	144275
Расход угля, тут	24104	21939	16904	15181	5507	9542	9542	9542	9542	9542	10954	10995	11035	11076	11117	11164	11211	11258	11305
Расход газа, тут	98525	101399	104707	115680	111852	110937	110936	110923	111800	112071	128658	129135	129611	130088	130565	131118	131670	132223	132775
Расход мазута, тут	311	271	309	287	108	165	165	165	165	165	189	190	191	192	192	193	194	195	195
Натуральное топливо																			1
Расход угля, тыс.т	28,29	25,75	19,84	17,76	6,50	11,20	11,20	11,20	11,20	11,20	12,85	12,90	12,95	13,00	13,05	13,10	13,16	13,21	13,27
Расход газа, млн.м ³	84,97	87,45	90,30	99,69	96,09	95,63	95,63	95,63	96,38	96,65	110,95	111,36	111,78	112,19	112,60	113,07	113,55	114,03	114,50
Расход мазута, тыс.т	0,23	0,20	0,23	0,21	0,08	0,12	0,12	0,12	0,12	0,12	0,14	0,14	0,14	0,14	0,14	0,14	0,14	0,14	0,14

Таблица 3.2 Перспективные значения потребления топлива КРК АО «Омск РТС»

КРК АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Установленная тепловая мощ-																			
ность оборудования. Гкал/ч	585	585	585	585	585	585	585	585	585	585	585	585	585	585	585	585	585	585	585
Присоединенная тепловая	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90
нагрузка в паре, Гкал/ч	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,90	1,50	1,90	1,90	1,90	1,50	1,90	1,90	1,90
Присоединенная договорная	508,00	508,00	508,52	513,18	511,45	518,40	528,37	533,54	536,54	551,30	482,60	487,35	492,11	496,86	501,62	507,11	512,59	518,08	523,57
нагрузка в горячей воде, Гкал/ч	306,00	306,00	306,32	313,16	311,43	310,40	320,37	333,34	330,34	331,30	402,00	467,33	452,11	450,60	301,02	307,11	312,39	310,00	323,37
Присоединенная расчетная	508,00	508,00	508,52	513,18	409,16	416,11	426,08	431,24	434,25	449,01	380,31	385,06	389,82	394,57	399,33	404,82	410,30	415,79	421,28
нагрузка в горячей воде, Гкал/ч	300,00	506,00	306,32	313,10	409,10	410,11	420,06	431,24	434,23	449,01	360,31	363,00	309,02	394,37	399,33	404,62	410,30	415,79	421,20
Отпуск теплоэнергии с коллек-																			
торов, тыс.Гкал	1163,34	1194,00	1200,64	1309,29	1194,65	1202,08	1205,79	1209,52	1207,61	1209,46	1044,57	1055,99	1067,40	1078,81	1090,22	1103,40	1116,57	1129,74	1142,91
Отпуск теплоэнергии с паром,																			I
тыс.Гкал	6,54	7,84	9,67	12,40	12,59	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21	12,21
Отпуск теплоэнергии с горячей																			1
водой, тыс.Гкал	1156,80	1186,16	1190,97	1296,89	1182,07	1189,87	1193,58	1197,31	1195,40	1197,25	1032,36	1043,77	1055,19	1066,60	1078,01	1091,18	1104,35	1117,53	1130,70
Коэффициент использования																			i
установленной тепловой мощ-															24.0	o	0.4.0		
ности, %	22,7	23,2	23,4	25,5	23,3	23,5	23,5	23,6	23,6	23,6	20,4	20,6	20,8	21,1	21,3	21,5	21,8	22,0	22,3
Число часов использования																			i
установленной тепловой мощ-	4000	00.44	0050	0000	0040	0055	0004	0000	0004	0007	4700	4005	4005	4044	4004	4000	4000	4004	4054
НОСТИ, Ч	1989	2041	2052	2238	2042	2055	2061	2068	2064	2067	1786	1805	1825	1844	1864	1886	1909	1931	1954
УРУТ на отпуск теплоэнергии,	4545	455.0	4540	450.0	455.4	455.4	455.0	455.4	455.5	455.0	455.07	455.04	455.04	455.57	455.54	455.50	455.40	455.40	455.00
кг/Гкал	154,5	155,0	154,9	156,2	155,1	155,4	155,3	155,1	155,5	155,3	155,67	155,64	155,61	155,57	155,54	155,50	155,46	155,43	155,39
Расход условного топлива, тут	179737	185067	185973	204120	185288	186705	187280	187618	187764	187764	162612	164353	166093	167833	169573	171580	173587	175593	177599
Расход топлива на тепло, тут	179737	185067	185973	204120	185288	186705	187280	187618	187764	187764	162612	164353	166093	167833	169573	171580	173587 0	175593	177599
Расход угля, тут	0	0)	0	0	0	U	0	407704	0	0	O)	407000	0	U	U	475500	477500
Расход газа, тут	179633	185052	185934	204096	185288	186705	187280	187618	187764	187764	162612	164353	166093	167833	169573	171580	173587	175593	177599
Расход мазута, тут	103	15	39	24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Натуральное топливо	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Расход угля, тыс.т	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Расход газа, млн.м ³	156,88	161,62	160,72	176,00	159,29	161,05	161,00	161,29	161,42	163,99	142,02	143,54	145,06	146,58	148,10	149,85	151,60	153,36	155,11
Расход мазута, тыс.т	0,07	0,01	0,03	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

На рисунке 3.2 представлены перспективные значения потребления топлива энергоисточников АО «Омск РТС» на отпуск тепловой энергии.

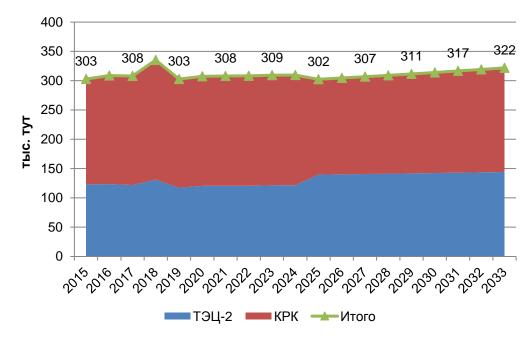


Рисунок 3.2 Расход топлива на отпуск тепловой энергии по энергоисточникам АО «Омск РТС»,

В целом за рассматриваемый период потребление топлива в 2033 г. по отношению к 2019 г. увеличится на 6,2 %, отпуск тепла – на 5,2 %.

Значения полезного отпуска АО «Омск РТС», с учетом тепла от источников АО «ТГК-11», представлены в таблице ниже.

Таблица 3.3 Полезный отпуск АО «Омск РТС»

АО «Омск РТС»	2019 факт	6 мес. 2020 факт	2020 ожид	2021	2022	2023	2024	2029	2033
Полезный отпуск конечным потре- бителям, тыс. Гкал	7 226	3 920	7 010	7 248	7 248	7 248	7 248	7 248	7 248
в т.ч. в паре	18	7	16	19	19	19	19	19	19
в т.ч. в горячей воде	7 208	3 913	6 993	7 228	7 228	7 228	7 228	7 228	7 228

3.1 Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием возобновляемых источников энергии и местных видов топлива

ТЭЦ-2:

Основное топливо – природный газ, резервное топливо - кузнецкий каменный уголь, растопочное топливо – мазут

Существующее топливно-транспортное хозяйство обеспечивает разгрузку поступающего твердого топлива, его складирование и хранение, подготовку и своевременную подачу в необходимом для ТЭЦ количестве.

Газ на ТЭЦ-2 поступает из магистрального газопровода от городской газорегуляторной станции

(ГРС-4), давлением 6 кгс/см². На территории станции расположен газорегуляторный пункт (ГРП), где осуществляется снижение давления газа до 0,9 кгс/см², а также очистка газа от механических примесей, контроль давления на входе и выходе, контроль температуры поступающего газа и измерение расхода газа. Ввод газа на территорию до ГРП и разводка по территории ведётся по надземному газопроводу.

Производительность ГРП составляет 71254 м³/час. Для надежной и бесперебойной подачи газа через ГРП к потребителю предусмотрены три параллельные линии регулирования – две рабочие, одна в резерве.

Подача газа в цех осуществляется внутриплощадочным надземным газопроводом Ду = 800 мм. Ограничений по пропускной способности газопроводов нет.

КРК

В качестве основного топлива в КРК используется природный газ Богандинского месторождения, а в качестве резервного топлива применяется мазут.

Топочный мазут марки ТКМ-16 поставляется по договору, заключенному с ОАО «Газпромнефть-ОНПЗ». На промплощадку КРК мазут поступает в железнодорожных цистернах ёмкостью по 60 т.

Природный газ поступает по магистральному газопроводу Комсомольск-Богадинская-Крутинка на ГРС-5 и по газопроводу диаметром Ду 700 мм подаётся на ГРП-1 и ГРП-2 КРК. Газорегуляторные пункты ГРП-1, ГРП-2 предназначены для снижения (дросселирования) входного давления газа до заданного выходного и поддержания последнего в контролируемой точке газопровода постоянным (в заданных пределах) независимо от изменения входного давления и расхода газа.

ГРП-1: Давление газа на входе ГРП-1 составляет 6 кгс/см², на выходе 0,5 кгс/см². На ГРП-1 имеются 3 технологические нитки с выходным давлением газа 0,5 кгс/см². От 1, 2 и 3 нитки газ подается к котлам КВГМ-100 и ПТВМ-30М.

ГРП-2: На ГРП-2 имеются 2 технологические нитки с выходным давлением 0,53 кгс/см², от них газ подается к паровым котлам ГМ-50-14/250. При нормальном режиме работы одна из ниток находится в работе, другая в резерве.

3.2 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии

Виды топлива, их доля и значение низшей теплоты сгорания по источникам АО «Омск РТС» приведены в Таблица 3.4.

Таблица 3.4 Виды топлива, их доля и значение низшей теплоты сгорания

ТЭЦ-2 АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Расход угля, тыс.т	28	26	20	18	6	11	11	11	11	11	13	13	13	13	13	13	13	13	13
Низшая теплота сгорания,																			
ккал/кг	5965	5965	5965	5982	5932	5964	5964	5964	5964	5965	5965	5965	5965	5965	5965	5965	5965	5965	5965
Доля топлива, %	19,6%	17,7%	13,9%	11,6%	4,7%	7,9%	7,9%	7,9%	7,9%	7,8%	7,8%	7,8%	7,8%	7,8%	7,8%	7,8%	7,8%	7,8%	7,8%
Расход газа, млн.м3	85	87	90	100	96	96	96	96	96	97	111	111	112	112	113	113	114	114	115
Низшая теплота сгорания,																			1
ккал/м ³	8117	8117	8117	8123	8148	8120	8120	8120	8120	8117	8117	8117	8117	8117	8117	8117	8117	8117	8117
Доля топлива, %	80,1%	82,0%	85,9%	88,2%	95,2%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%	92,0%
Расход мазута, тыс.т	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Низшая теплота сгорания,																			1
ккал/кг	9596	9596	9613	9612	9333	9625	9625	9625	9625	9596	9596	9596	9596	9596	9596	9596	9596	9596	9596
Доля топлива, %	0,3%	0,2%	0,3%	0,2%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%	0,1%
КРК АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Расход угля, тыс.т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Низшая теплота сгорания,																			1
ккал/кг	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Доля топлива, %	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
Расход газа, млн.м3	157	162	161	176	159	161	161	161	161	164	142	144	145	147	148	150	152	153	155
Низшая теплота сгорания,																			
ккал/м ³	8015	8015	8098	8117	8142	8115	8142	8142	8142	8015	8015	8015	8015	8015	8015	8015	8015	8015	8015
Доля топлива, %	99,9%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%
Расход мазута, тыс.т	0,07	0,01	0,03	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Низшая теплота сгорания,																			1
ккал/кг	9800	9800	9800	9333	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Доля топлива, %	0,1%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%	0,0%
АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Расход угля, тыс.т	28	26	20	18	6	11	11	11	11	11	13	13	13	13	13	13	13	13	13
Расход газа, млн.м3	242	249	251	276	255	257	257	257	258	261	253	255	257	259	261	263	265	267	270
Расход мазута, тыс.т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Таблица 3.5 Максимальные часовые расходы топлива

ТЭЦ-2 АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Максимальный расход топлива																			
в ОЗП, тут/ч	49,34	48,00	48,13	48,50	47,11	48,95	49,45	50,03	50,01	50,08	57,28	57,49	57,70	57,91	58,11	58,35	58,59	58,83	59,07
Максимальный расход топлива																			
в переходный период, тут/ч	17,22	16,59	16,81	16,90	16,26	16,83	16,99	17,15	17,14	17,16	19,48	19,55	19,62	19,69	19,77	19,85	19,93	20,01	20,09
Максимальный расход топлива																			
в летнем режиме, тут/ч	9,01	8,57	8,81	8,84	8,38	8,63	8,70	8,75	8,75	8,76	9,83	9,86	9,90	9,94	9,98	10,02	10,06	10,10	10,14
КРК АО "ОмскРТС"	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
КРК АО "ОмскРТС" Максимальный расход топлива	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
	2015 78,49	2016 78,74	2017 78,77	2018 80,16	2019 79,33	2020 80,53	2021 82,07	2022 82,76	2023 83,42	2024 85,59	2025 75,13	2026 75,85	2027 76,57	2028 77,30	2029 78,02	2030 78,86	2031 79,69	2032 80,52	2033 81,36
Максимальный расход топлива			-				-	-		-			-						
Максимальный расход топлива в ОЗП, тут/ч			-				-	-		-			-						81,36
Максимальный расход топлива в ОЗП, тут/ч Максимальный расход топлива	78,49	78,74	78,77	80,16	79,33	80,53	82,07	82,76	83,42	85,59	75,13	75,85	76,57	77,30	78,02	78,86	79,69	80,52	81,36

3.3 Описание изменений в перспективных топливных балансах за период, предшествующий актуализации схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных источников тепловой энергии

Значения в перспективных топливных запасах скорректированы с учетом изменения тепловых нагрузок, величины прогнозного отпуска, изменения прогнозных сроков переключения тепловой нагрузки от котельных, планируемых мероприятий и сроков их реализации.

4. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ КОТЕЛЬНЫХ МП Г. ОМСКА «ТЕПЛОВАЯ КОМПАНИЯ»

При прогнозировании отпускаемой тепловой энергии и необходимого количества топлива для котельных г. Омска рассматривались расчеты с учетом покрытия перспективных приростов и частичным переводом части нагрузок от котельных на источники АО «ТГК-11» и АО «Омск РТС».

На балансе предприятия на 01.01.2020 г. находятся 28 котельных, из них:

- 3 котельных, работающих на каменном угле:
 - 1.01 ул.Карбышева, 2,
 - 2.09 п.Карьер, ул.Гуртьевской дивизии, 7,
 - 5.05 ул.Красных зорь, 54в;
- 25 котельных, работающих на природном газе.

В 2020 году закрыты на консервацию котельные:

- с января 2020 котельная по ул. Красных зорь, 54в,
- с апреля 2020 года по ул.Завертяева, 9/1,
- с января 2020 года по ул.Верхнеднепровская, 266.

Котельную № 1.43 планируется ввести в эксплуатацию после строительства детского сада и школы в п. Рябиновка в 2021-2023 гг.

4.1 Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием возобновляемых источников энергии и местных видов топлива

На котельных МП г. Омска «Тепловая компания» в качестве основного топлива используется в большинстве природный горючий газ, каменный уголь используется только на трех котельных с небольшой установленной мощностью 0,34-1,14 Гкал/час.

Мазут и дизельное топливо в качестве основного топлива на котельных не используется.

Из местных видов топлива на котельных МП г. Омска «Тепловая компания» в качестве резервного используется мазут и дизельное топливо производства, расположенного в городе Омске ОАО «Газпромнефть-ОНПЗ». Возобновляемые источники энергии не используются из-за отсутствия опыта и разработок в отечественной энергетике.

4.2 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии

Доля использования угля в производстве тепловой энергии в МП г. Омска «Тепловая компания» составляет меньше 1 %.

На котельные МП «Тепловая компания» природный газ поставляется от газораспределительных станций по газопроводу с калорийностью 8073-8099 ккал/кг, в качестве резервного топлива используется мазут марки ТКМ-16, дизельное топливо марки ДТ-35-К5 минус 32 и каменный уголь марки Д.

Структура топлива котельных МП «Тепловая компания» представлена ниже (Таблица 4.1). Таблица 4.1 Структура топлива газовых котельных МП «Тепловая компания»

Топливный режим ко- тельной	Основное топливо	I	Резервное топливо	
Вид	Газовое топливо	Мазут	Дизельное топливо	Уголь каменный
Марка	природный газ	TKM-16	ДТ-3-К5 минус 32	Д
Калорийность	8009-8214	9700	10300	5084
Поставщик топлива	ЗАО «Газпром меж- регионгаз Омск	"Газпромнефть- Терминал"	"Газпромнефть- Терминал"	ООО «Омресурс»
Способ доставки на ко- тельную	газопровод	автотранспорт	автотранспорт	автотранспорт
Откуда осуществляется	"Газпром трансгаз»	Омская нефте-	Омская нефте-	склад постав-
поставка	Томск"	база	база	щика
Периодичность поставки	круглогодично	По заявкам	По заявкам	По заявкам

Места поставки природного газа на котельные МП г. Омска «Тепловая компания» представлены в таблице (Таблица 4.2).

Таблица 4.2 Место поставки природного газа на газовые котельные МП «Тепловая компания»

Место поставки	№ котельной	Адрес котельной						
ГРС-1А	5.04	Ул. Березовая, За						
	4.02	П. Большие поля, ул. Комсомольская, 3						
	5.02	М-н Загородный, 12						
ΓPC-2	5.03	Ул.Завертяева, 9/1						
170-2	5.21	Ул.Каховского, 21						
	5.36	Ул. Завертяева, 32						
	5.39	П. Степной, ул. 40 лет ракетных войск, 23						
ГРС-3	5.01	Ул. 4 Северная, 180						
	2.01	Ул. 19 Марьяновская, 40/1						
	2.02	Ул 1 красной звезды, 49						
	2.03	14 военный городок № 72						
	2.04	П. Светлый						
ГРС-4	2.05	Ул. Заслонова, 2						
	2.06	П. Черемуховское. Ул. Захарченко, 29/1						
	2.08	Ул. 4 Ленинградская, 48						
	2.35	Ул. Архиепископа Сильвестра. 21						
	3.01	П. Осташково, ул. Ноябрьская, 15						
	1.03	Ул. Мельничная. 2						
ГРС-5	1.05	Авиагородок, 9а						
	1.27	Ул. Дмитриева, 8 к5						
ГРС-6 Береговой	4.01	П. Береговой, ул. Иртышская, 1/3						
ГРС-14	2.07	П. Новая Станица. Ул. Поморцева, 50/1						
ГРС-14 Красноярская	3.02	П. Крутая Горка, ул. Российская, 4а						

Калорийность и другие показатели природного газа ООО «Газпром трансгаз Томск» предоставляет на официальном сайте в онлайн в виде паспорта качества горючего природного газа.

Качество газообразного топлива по газораспределительным станциям г. Омска, поставляемым топливо на котельные МП г. Омска «Тепловая компания» представлено в таблице (Таблица 4.3).

Таблица 4.3 Качество природного газа ГРС г.Омска, поставляемого на газовые котельные МП «Тепловая компания»

the second of the first of the first of	, ,		
Показатель	Норма по ГОСТу 5542	ГРС-1А, 2, 3, 4	ГРС-5, 6 Береговой, 14, 14 Красноярская
Метан, %	Не нормируется	96	95,19
Этан, %	Не нормируется	1,89	2,27
Пропан, %	Не нормируется	0,5	0,66
Изо-бутан, %	Не нормируется	0,068	0,101
Норм-бутан. %	Не нормируется	0.071	0.103

Показатель	Норма по ГОСТу 5542	ГРС-1А, 2, 3, 4	ГРС-5, 6 Береговой, 14, 14 Красноярская
Изо-пентан, %	Не нормируется	0,0156	0,0221
Норм-пентан, %	Не нормируется	0,0113	0,0158
Гексан, %	Не нормируется	0,012	0,0139
Диоксид углерода, %	Не более 2,5	0,227	0,323
Азот, %	Не нормируется	1,21	1,28
Кислород, %	Не более 0,05	0,015	0,012
Водород, %	Не нормируется	Менее 0,001	Менее 0,001
Гелий, %	Не нормируется	0,0173	0,0173
Низшая теплота сгорания, ккал/кг	Не менее 7600	8085	8128
Число Воббе, ккал/м ³	9840-13020	11780	11785
Плотность, кг/м ³	Не нормируется	0,6972	0,7043

По данным таблицы фактические показатели качества природного газа не превышают нормативных.

На угольных котельных местный вид топлива не используется, каменный уголь марки ДМСШ класса 0-25 (по классификации согласно ГОСТу 25543-2013) с калорийностью 5084 ккал/кг поставляется ООО «Омресурс» с Задубровского нового разреза Кемеровской области г. Белово. Расстояние от города Белово до Омска 910 км.

В Кузнецком бассейне распространены каменные угли разнообразного качества, для которых характерны невысокая зольность (15%) и низкое содержание серы (0,4-0,6%). Теплота сгорания рядового рабочего топлива высокая. Зола углей Кузнецкого бассейна, содержащая много кремнезема (до 60%) и мало окислов железа (<10%), обладают повышенной тугоплавкостью. Часть топок, сжигающих Кузнецкий уголь такого качества, работает на жидком шлакоудалении. Зола углей отдельных резервов с открытой добычей имеет повышенное содержание окиси кальция (до 20%), в связи, с чем обладает более низкими температурами плавкости.

Структура твердого топлива представлена ниже (Таблица 4.4).

Таблица 4.4 Структура топлива угольных котельных МП «Тепловая компания»

Топливный режим котельной	Основное топливо
Вид	уголь каменный
Марка	ДМСШ
Калорийность	5084
Поставщик топлива	ООО "Омресурс"
Способ доставки на котельную	автотранспорт
Откуда осуществляется поставка	склад ООО "Омресурс"
Периодичность поставки	отопительный период

Калорийность и другие показатели каменного угля предоставляет ООО «Омресурс» в виде удостоверений о качестве угля во время поставки топлива.

Качество угля в январе 2020 года представлены в таблице (Таблица 4.5).

Таблица 4.5 Качество угля, поставляемого ООО «Омресурс» в январе 2020г.

Показатель	Влага, W ^r , %	Зола, A ^d , %	S ^d , %	Содержание ле- тучих, V ^{daf} , %	Теплота сгорания, Q _і г, ккал/кг
Фактический	19,3	9,2	0,28	40,1	5084
Нормативный, установленный ТУ или ГОСТом для данного угольного предприятия	20	11	0,3	-	-

Как видно из таблицы фактические показатели качества топлива соответствуют нормативным показателям.

Ниже в таблице (Таблица 4.6) представлены годовые значения отпуска тепла, топливопотребления и средневзвешенные удельные расходы топлива котельных МП г. Омска «Тепловая компания» по видам топлива. Калорийность топлива при расчете принята согласно предоставленным данным.

Расчеты перспективных топливных балансов выполнены с учетом снижения удельных расходов условного топлива при выполнении запланированных мероприятий по замене основного оборудования на котельных:

- 2.02 ул. 1-я Красной звезды, 49 с 2022 ода,
- 2.03 14 в/г №72 (п. Черемушки) с 2023 года,
- 2.04 п. Светлый с 2024 года,
- 2.05 ул. К. Заслонова, 2 с 2024 года,
- 2.35 ул. Архиепископа Сильвестра, 21 с 2021 года,
- 3.02 Крутая Горка, ул. Российская, 4а с 2024 года,
- 4.01 п. Береговой, ул. Иртышская, 1/3 с 2022 и с 2023 года,
- 5.01 ул. 4-я Северная, 180 с 2021 года.

Таблица 4.6 Отпуск тепла, топливопотребление и средневзвешенные расходы топлива котельных МП г.Омска «Тепловая компания»

1.01 ул. Карбышево-2	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59	0,59
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007
Средневзвешенный срок службы, лет	31	32	33	34	35	36	37	38	39	40	41	45
Выработка тепловой энергии, тыс. Гкал	0,743	0,621	0,632	0,629	0,625	0,622	0,618	0,614	0,610	0,606	0,602	0,584
Собственные нужды тепловой энергии, тыс. Гкал	0,037	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,706	0,590	0,601	0,598	0,594	0,591	0,587	0,583	0,579	0,575	0,571	0,553
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,706	0,590	0,601	0,598	0,594	0,591	0,587	0,583	0,579	0,575	0,571	0,553
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,267	0,164	0,162	0,159	0,155	0,152	0,148	0,144	0,140	0,136	0,132	0,114
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,439	0,426	0,439	0,439	0,439	0,439	0,439	0,439	0,439	0,439	0,439	0,439
Коэффициент использования установленной тепловой мощности, $\%$	14,4	12,0	12,2	12,2	12,1	12,0	12,0	11,9	11,8	11,7	11,6	11,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	224,3	224,3	227,2	227,2	227,2	227,2	227,2	227,2	227,2	227,2	227,2	227,2
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,158	0,132	0,137	0,136	0,135	0,134	0,133	0,132	0,132	0,131	0,130	0,126
Теплота сгорания угля, ккал/кг	4269	3796	4200	4200	4200	4200	4200	4200	4200	4200	4200	4200
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,158	0,132	0,137	0,136	0,135	0,134	0,133	0,132	0,132	0,131	0,130	0,126
Расход угля на отпуск тепловой энергии, тыс. т.н.т	0,260	0,244	0,228	0,226	0,225	0,224	0,222	0,221	0,219	0,218	0,216	0,209
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,07	0,07	0,07	0,07
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,019	0,018	0,018	0,018	0,018	0,018	0,017	0,017	0,017	0,017	0,016	0,016
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,781	0,781	0,791	0,791	0,791	0,791	0,791	0,791	0,791	0,791	0,791	0,791
Расход угля в самые холодные сутки, т.н.т/сут	1,280	1,440	1,318	1,318	1,318	1,318	1,318	1,318	1,318	1,318	1,318	1,318
Нормативный неснижаемый запас угля, т.н.т.	33	33	25	25	25	25	25	25	25	25	25	25

Нормативный эксплуатационный запас угля, т.н.т.	14	14	9	9	9	9	9	9	9	9	9	9
1.03 л. Мельничная, 2	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	54,72	54,72	54,72	54,72	54,72	54,72	54,72	54,72	54,72	54,72	54,72	54,72
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,832	0,832	0,832	0,832	0,832	0,832	0,832	0,832	0,832	0,832	0,832	0,832
Средневзвешенный срок службы, лет	20	21	22	23	24	25	26	27	28	29	30	34
Выработка тепловой энергии, тыс. Гкал	108,669	117,810	113,081	112,743	112,716	112,662	112,581	112,473	112,339	112,180	111,994	111,009
Собственные нужды тепловой энергии, тыс. Гкал	4,260	4,618	4,433	4,433	4,433	4,433	4,433	4,433	4,433	4,433	4,433	4,433
Отпуск тепловой энергии с коллекторов, тыс. Гкал	104,4	113,2	108,6	108,3	108,3	108,2	108,1	108,0	107,9	107,7	107,6	106,6
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,054	0,054	0,054	0,054	0,054	0,054	0,054	0,054	0,054	0,054	0,054	0,054
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	104,355	113,138	108,594	108,255	108,228	108,174	108,094	107,986	107,852	107,692	107,507	106,522
Потери тепловой энергии в тепловых сетях, тыс. Гкал	22,891	26,590	27,130	27,043	27,015	26,961	26,881	26,773	26,639	26,479	26,294	25,309
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	81,464	86,548	81,464	81,213	81,213	81,213	81,213	81,213	81,213	81,213	81,213	81,213
Коэффициент использования установленной тепловой мощности, %	22,7	24,6	23,6	23,5	23,5	23,5	23,5	23,5	23,4	23,4	23,4	23,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	155,6	155,6	161,5	161,5	161,5	161,5	161,5	161,5	161,5	161,5	161,5	161,5
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	16,983	17,613	17,547	17,492	17,488	17,479	17,466	17,449	17,427	17,401	17,371	17,212
Теплота сгорания природного газа, ккал/н.м³	8178	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	16,98	17,61	17,55	17,49	17,49	17,48	17,47	17,45	17,43	17,40	17,37	17,21
Расход природного газа на отпуск тепловой энергии, млн. н. м³	14,54	15,59	15,53	15,48	15,48	15,47	15,46	15,44	15,42	15,40	15,37	15,23
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	31,67	31,92	31,78	31,68	31,68	31,68	31,68	31,68	31,68	31,68	31,68	31,68
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	10,39	10,40	10,30	10,23	10,18	10,13	10,07	10,02	9,97	9,91	9,86	9,64
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	4,59	4,56	4,48	4,43	4,38	4,33	4,27	4,22	4,16	4,11	4,06	3,84
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	4,928	4,966	5,132	5,116	5,116	5,116	5,116	5,116	5,116	5,116	5,116	5,116
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	1,617	1,619	1,664	1,653	1,645	1,636	1,627	1,618	1,610	1,601	1,592	1,557
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,714	0,709	0,724	0,716	0,708	0,699	0,690	0,681	0,673	0,664	0,655	0,620
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	22,35	22,35	22,35	22,35	22,35	22,35	22,35	22,35	22,35	22,35	22,35	22,35
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	17,20	17,20	17,20	17,20	17,20	17,20	17,20	17,20	17,20	17,20	17,20	17,20

Расход условного топлива в самые холодные сутки, т.у.т./сут	83,482	83,482	86,647	86,647	86,647	86,647	86,647	86,647	86,647	86,647	86,647	86,647
Расход мазута в самые холодные сутки, т.н.т/сут	60,245	60,245	62,529	62,529	62,529	62,529	62,529	62,529	62,529	62,529	62,529	62,529
Нормативный неснижаемый запас мазута, т.н.т.	337	340	271	271	271	271	271	271	271	271	271	271
Нормативный эксплуатационный запас мазута, т.н.т.	153	153	150	150	150	150	150	150	150	150	150	150
1.04 ул. Перова, 43	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	57,00	57,00	57,00	57,00	57,00	57,00	57,00	57,00	57,00	57,00	57,00	57,00
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,867	0,867	0,867	0,867	0,867	0,867	0,867	0,867	0,867	0,867	0,867	0,867
Средневзвешенный срок службы, лет	19	20	21	22	23	24	25	26	27	28	29	33
Выработка тепловой энергии, тыс. Гкал	114,627	103,391	94,409	101,760	97,370	97,337	97,278	97,203	97,112	97,004	96,881	96,269
Собственные нужды тепловой энергии, тыс. Гкал	4,493	4,053	3,699	3,699	3,699	3,699	3,699	3,699	3,699	3,699	3,699	3,699
Отпуск тепловой энергии с коллекторов, тыс. Гкал	110,1	99,3	90,7	98,1	93,7	93,6	93,6	93,5	93,4	93,3	93,2	92,6
Хозяйственные нужды тепловой энергии, тыс. Гкал	0	0	0	0	0	0	0	0	0	0	0	0
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	110,134	99,338	90,710	98,061	93,671	93,638	93,579	93,504	93,412	93,305	93,181	92,570
Потери тепловой энергии в тепловых сетях, тыс. Гкал	35,749	16,284	16,325	16,581	16,787	16,753	16,702	16,634	16,549	16,448	16,332	15,720
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	74,385	83,054	74,385	72,201	76,884	76,884	76,877	76,870	76,863	76,856	76,849	76,849
Коэффициент использования установленной тепловой мощности, %	23,0	20,7	20,0	20,4	19,5	19,5	19,5	19,5	19,4	19,4	19,4	19,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	149,6	159,3	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	16,481	15,825	15,417	15,758	15,053	15,048	15,038	15,026	15,011	14,994	14,974	14,876
Теплота сгорания природного газа, ккал/н.м³	8125	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	16,48	15,82	15,42	15,76	15,05	15,05	15,04	15,03	15,01	14,99	14,97	14,88
Расход природного газа на отпуск тепловой энергии, млн. н. м³	14,20	14,00	13,64	13,95	13,32	13,32	13,31	13,30	13,28	13,27	13,25	13,16
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0	0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0	0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	32,85	33,02	33,92	33,24	34,76	34,76	34,76	34,75	34,75	34,75	34,75	34,75
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	14,46	14,40	14,50	14,09	14,40	14,24	14,10	13,97	13,83	13,69	13,55	13,00
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	8,45	8,36	8,30	8,01	8,05	7,89	7,75	7,61	7,47	7,33	7,20	6,65
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	4,914	5,260	6,712	6,804	5,586	5,586	5,585	5,585	5,585	5,584	5,584	5,584
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	2,163	2,294	2,469	2,503	2,315	2,289	2,267	2,244	2,222	2,200	2,178	2,089

Максимальный часовой расход условного топлива в летний период, т.у.т/ч	1,264	1,331	1,422	1,439	1,293	1,267	1,245	1,223	1,201	1,179	1,156	1,068
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	25,83	25,83	26,37	26,37	26,37	26,37	26,37	26,37	26,37	26,37	26,37	26,37
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	19,87	19,87	20,28	20,28	20,28	20,28	20,28	20,28	20,28	20,28	20,28	20,28
Расход условного топлива в самые холодные сутки, т.у.т./сут	92,739	98,752	101,703	101,703	101,703	101,703	101,703	101,703	101,703	101,703	101,703	101,703
Расход мазута в самые холодные сутки, т.н.т/сут	66,925	71,264	73,394	73,394	73,394	73,394	73,394	73,394	73,394	73,394	73,394	73,394
Нормативный неснижаемый запас мазута, т.н.т.	322	322	278	278	287	287	287	287	287	287	287	287
Нормативный эксплуатационный запас мазута, т.н.т.	165	165	162	162	167	167	167	167	167	167	167	167
1.05 ул. Авиагородок, 9а	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	50,73	50,73	50,73	50,73	50,73	50,73	50,73	50,73	50,73	50,73	50,73	50,73
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	1,121	1,121	1,121	1,121	1,121	1,121	1,121	1,121	1,121	1,121	1,121	1,121
Средневзвешенный срок службы, лет	24	25	26	27	28	29	30	31	32	33	34	38
Выработка тепловой энергии, тыс. Гкал	103,743	94,762	90,590	90,590	90,414	77,038	77,013	76,978	76,936	76,885	76,826	76,512
Собственные нужды тепловой энергии, тыс. Гкал	5,810	5,307	5,073	5,073	5,073	5,073	5,073	5,073	5,073	5,073	5,073	5,073
Отпуск тепловой энергии с коллекторов, тыс. Гкал	97,9	89,5	85,5	85,5	85,3	72,0	71,9	71,9	71,9	71,8	71,8	71,4
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	97,930	89,451	85,513	85,513	85,337	71,961	71,936	71,901	71,859	71,808	71,749	71,435
Потери тепловой энергии в тепловых сетях, тыс. Гкал	22,301	9,747	9,884	9,884	9,856	8,592	8,567	8,532	8,490	8,439	8,380	8,066
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	75,629	79,704	75,629	75,629	75,481	63,369	63,369	63,369	63,369	63,369	63,369	63,369
Коэффициент использования установленной тепловой мощности, %	23,3	21,3	20,4	20,4	20,3	17,3	17,3	17,3	17,3	17,3	17,3	17,2
Удельный расход условного топлива на отпуск тепловой энергии. кг.у.т./Гкал	137,9	164,5	164,6	164,6	164,6	164,6	164,6	164,6	164,6	164,6	164,6	164,6
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	13,506	14,715	14,076	14,076	14,047	11,846	11,841	11,836	11,829	11,820	11,810	11,759
Теплота сгорания природного газа, ккал/н.м³	8150	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	13,51	14,72	14,08	14,08	14,05	11,85	11,84	11,84	11,83	11,82	11,81	11,76
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	11,60	13,02	12,46	12,46	12,43	10,48	10,48	10,47	10,47	10,46	10,45	10,41
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	31,86	31,92	32,09	32,09	32,03	27,98	27,98	27,98	27,98	27,98	27,98	27,98
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	10,37	10,33	10,31	10,25	10,18	8,86	9,01	8,96	8,90	8,85	8,80	8,58

Тепловая нагрузка на коллекторах в летний период, Гкал/ч	4,53	4,48	4,44	4,37	4,32	3,74	3,89	3,83	3,78	3,73	3,67	3,46
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	4,393	5,252	5,282	5,282	5,272	4,606	4,606	4,606	4,606	4,606	4,606	4,606
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	1,430	1,699	1,698	1,687	1,676	1,458	1,483	1,474	1,465	1,457	1,448	1,413
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,625	0,738	0,730	0,720	0,711	0,615	0,640	0,631	0,622	0,613	0,605	0,570
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	22,43	22,43	22,43	22,43	22,43	22,43	22,43	22,43	22,43	22,43	22,43	22,43
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	17,25	17,25	17,25	17,25	17,25	17,25	17,25	17,25	17,25	17,25	17,25	17,25
Расход условного топлива в самые холодные сутки, т.у.т./сут	74,236	88,556	88,610	88,610	88,610	88,610	88,610	88,610	88,610	88,610	88,610	88,610
Расход мазута в самые холодные сутки, т.н.т/сут	53,573	63,906	63,945	63,945	63,945	63,945	63,945	63,945	63,945	63,945	63,945	63,945
Нормативный неснижаемый запас мазута, т.н.т.	280	280	198	198	203	203	203	203	203	203	203	203
Нормативный эксплуатационный запас мазута, т.н.т.	116	116	102	102	104	104	104	104	104	104	104	104
1.27 ул. Дмитриева, 8 к5	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	17,20	17,20	17,20	26,66	26,66	26,66	26,66	26,66	26,66	26,66	26,66	26,66
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,190	0,190	0,190	0,190	0,190	0,190	0,190	0,190	0,190	0,190	0,190	0,190
Средневзвешенный срок службы, лет	12	13	14	15	16	17	18	19	20	21	22	26
Выработка тепловой энергии, тыс. Гкал	43,663	44,830	40,969	40,969	40,968	40,965	40,960	40,954	40,947	40,938	40,928	40,874
Собственные нужды тепловой энергии, тыс. Гкал	0,987	1,013	0,926	0,926	0,926	0,926	0,926	0,926	0,926	0,926	0,926	0,926
Отпуск тепловой энергии с коллекторов, тыс. Гкал	42,7	43,8	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	40,0	39,9
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	42,676	43,817	40,043	40,043	40,042	40,039	40,034	40,028	40,021	40,012	40,002	39,948
Потери тепловой энергии в тепловых сетях, тыс. Гкал	4,109	1,476	1,476	1,476	1,475	1,472	1,467	1,461	1,454	1,445	1,435	1,381
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	38,568	42,341	38,567	38,567	38,567	38,567	38,567	38,567	38,567	38,567	38,567	38,567
Коэффициент использования установленной тепловой мощности, %	29,0	29,8	27,2	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5	17,5
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	6,747	6,927	6,331	6,331	6,331	6,330	6,329	6,328	6,327	6,326	6,324	6,316
Теплота сгорания природного газа, ккал/н.м ³	8152	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	6,75	6,93	6,33	6,33	6,33	6,33	6,33	6,33	6,33	6,33	6,32	6,32
Расход природного газа на отпуск тепловой энергии, млн. н. м³	5,79	6,13	5,60	5,60	5,60	5,60	5,60	5,60	5,60	5,60	5,60	5,59
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	15,38	15,38	15,38	15,38	15,38	15,38	15,38	15,38	15,38	15,38	15,38	15,38
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	4,17	4,16	4,15	4,14	4,13	4,12	4,11	4,10	4,09	4,08	4,07	4,03
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	1,35	1,34	1,33	1,32	1,31	1,30	1,29	1,28	1,27	1,26	1,25	1,21
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,431	2,431	2,431	2,431	2,431	2,431	2,431	2,431	2,431	2,431	2,431	2,431
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,659	0,657	0,656	0,654	0,653	0,651	0,649	0,648	0,646	0,645	0,643	0,637
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,214	0,212	0,210	0,209	0,207	0,206	0,204	0,203	0,201	0,200	0,198	0,192
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	10,31	10,31	10,31	10,31	10,31	10,31	10,31	10,31	10,31	10,31	10,31	10,31
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	7,93	7,93	7,93	7,93	7,93	7,93	7,93	7,93	7,93	7,93	7,93	7,93
Расход условного топлива в самые холодные сутки, т.у.т./сут	39,136	39,136	39,136	39,136	39,136	39,136	39,136	39,136	39,136	39,136	39,136	39,136
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	26,598	26,598	26,598	26,598	26,598	26,598	26,598	26,598	26,598	26,598	26,598	26,598
Нормативный неснижаемый запас угля, т.н.т.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Нормативный неснижаемый запас мазута, т.н.т.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Нормативный неснижаемый запас дизельного топлива, т.н.т.	133	133	79	79	79	79	79	79	79	79	79	79
1.43 ул. Верхнеднепровская, 266	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	2,58	2,58	2,58	2,58	2,58	2,58	2,58	2,58	2,58	2,58	2,58	2,58
Располагаемая тепловая мощность, Гкал/ч			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч			0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средневзвешенный срок службы, лет			1	2	3	4	5	6	7	8	9	13
Выработка тепловой энергии, тыс. Гкал			1,555	1,555	4,365	4,365	4,364	4,364	4,363	4,362	4,361	4,354
Собственные нужды тепловой энергии, тыс. Гкал			0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
Отпуск тепловой энергии с коллекторов, тыс. Гкал			1,5	1,5	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3
Хозяйственные нужды тепловой энергии, тыс. Гкал			0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал			1,520	1,520	4,330	4,330	4,329	4,328	4,328	4,327	4,325	4,319
Потери тепловой энергии в тепловых сетях, тыс. Гкал			0,068	0,068	0,169	0,169	0,168	0,168	0,167	0,166	0,165	0,159
Полезный отпуск тепловой энергии потребителям, тыс. Гкал			1,452	1,452	4,161	4,161	4,161	4,161	4,161	4,161	4,161	4,161
k7			0,9	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Коэффициент использования установленной тепловой мощности, %			6,9	6,9	19,3	19,3	19,3	19,3	19,3	19,3	19,3	19,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал			158,9	158,9	158,9	158,9	158,9	158,9	158,9	158,9	158,9	158,9

Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т			0,242	0,242	0,688	0,688	0,688	0,688	0,688	0,688	0,687	0,686
Теплота сгорания природного газа, ккал/н.м³			7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т			0,24	0,24	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69
Расход природного газа на отпуск тепловой энергии, млн. н. м³			0,21	0,21	0,61	0,61	0,61	0,61	0,61	0,61	0,61	0,61
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч			0,66	0,66	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч			0,16	0,16	0,43	0,43	0,42	0,42	0,42	0,42	0,42	0,41
Тепловая нагрузка на коллекторах в летний период, Гкал/ч			0,04	0,04	0,13	0,13	0,12	0,12	0,12	0,12	0,12	0,11
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч			0,105	0,105	0,262	0,262	0,262	0,262	0,262	0,262	0,262	0,262
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч			0,025	0,025	0,069	0,068	0,067	0,067	0,067	0,067	0,066	0,065
Максимальный часовой расход условного топлива в летний период, т.у.т/ч			0,006	0,006	0,021	0,020	0,020	0,019	0,019	0,019	0,019	0,018
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч			0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч			0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33
Расход условного топлива в самые холодные сутки, т.у.т./сут			1,946	1,946	1,946	1,946	1,946	1,946	1,946	1,946	1,946	1,946
2.01 ул. 19-я Марьяновская, 40/1	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,222	0,222	0,222	0,222	0,222	0,222	0,222	0,222	0,222	0,222	0,222	0,222
Средневзвешенный срок службы, лет	29	30	31	32	33	34	35	36	37	38	39	43
Выработка тепловой энергии, тыс. Гкал	27,481	25,483	23,854	27,218	27,214	27,207	27,196	40,173	40,149	40,121	40,088	39,913
Собственные нужды тепловой энергии, тыс. Гкал	1,097	1,019	0,695	0,695	0,695	0,695	0,695	0,695	0,695	0,695	0,695	0,695
Отпуск тепловой энергии с коллекторов, тыс. Гкал	26,4	24,5	23,2	26,5	26,5	26,5	26,5	39,5	39,5	39,4	39,4	39,2
Хозяйственные нужды тепловой энергии, тыс. Гкал	0	0	0	0	0	0	0	0	0	0	0	0
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	26,332	24,464	23,159	26,523	26,519	26,512	26,501	39,478	39,454	39,426	39,393	39,218
Потери тепловой энергии в тепловых сетях, тыс. Гкал	6,577	2,576	3,404	3,708	3,705	3,697	3,686	4,761	4,737	4,709	4,676	4,501
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	19,754	21,888	19,755	22,814	22,814	22,814	22,814	34,717	34,717	34,717	34,717	34,717
Коэффициент использования установленной тепловой мощности, %	18,3	17,0	15,9	18,2	18,2	18,2	18,2	26,8	26,8	26,8	26,8	26,6
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,1	161,1	161,5	161,5	161,5	161,5	161,5	161,5	161,5	161,5	161,5	161,5
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	4,250	3,941	3,740	4,283	4,283	4,282	4,280	6,376	6,372	6,367	6,362	6,334
Теплота сгорания природного газа, ккал/н.м³	8144	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910

Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	4,25	3,94	3,74	4,28	4,28	4,28	4,28	6,38	6,37	6,37	6,36	6,33
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	3,65	3,49	3,31	3,79	3,79	3,79	3,79	5,64	5,64	5,63	5,63	5,61
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	10,22	10,22	10,22	11,13	11,13	11,13	11,13	14,43	14,43	14,43	14,43	14,43
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	3,49	3,46	3,44	3,75	3,68	3,65	3,63	4,79	4,76	4,74	4,71	4,61
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	1,62	1,60	1,57	1,71	1,64	1,62	1,59	2,14	2,11	2,09	2,06	1,96
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	1,646	1,646	1,650	1,798	1,798	1,798	1,798	2,331	2,331	2,331	2,331	2,331
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,562	0,557	0,555	0,605	0,594	0,590	0,586	0,773	0,769	0,765	0,761	0,745
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,261	0,257	0,254	0,277	0,265	0,261	0,257	0,346	0,342	0,337	0,333	0,317
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	7,47	7,47	7,47	7,47	7,47	7,47	7,47	7,47	7,47	7,47	7,47	7,47
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	5,74	5,74	5,74	5,74	5,74	5,74	5,74	5,74	5,74	5,74	5,74	5,74
Расход условного топлива в самые холодные сутки, т.у.т./сут	29	29	29	29	29	29	29	29	29	29	29	29
Расход мазута в самые холодные сутки, т.н.т/сут	21	21	21	21	21	21	21	21	21	21	21	21
Нормативный неснижаемый запас мазута, т.н.т.	50	51	47	47	47	47	47	47	47	47	47	47
Нормативный эксплуатационный запас мазута, т.н.т.	53	54	53	53	53	53	53	53	53	53	53	53
2.02 ул. 1-я Красной звезды, 49	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	31,71	31,71	31,71	31,71	31,71	31,71	31,71	31,71	31,71	31,71	31,71	31,71
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,358	0,358	0,358	0,358	0,358	0,358	0,358	0,358	0,358	0,358	0,358	0,358
Средневзвешенный срок службы, лет	43	44	45	46	47	48	49	50	51	52	53	57
Выработка тепловой энергии, тыс. Гкал	43,551	41,853	39,142	41,505	48,008	47,558	47,472	34,225	34,133	34,035	33,933	33,739
Собственные нужды тепловой энергии, тыс. Гкал	1,738	1,670	1,562	1,562	1,562	1,562	1,562	1,562	1,562	1,562	1,562	1,562
Отпуск тепловой энергии с коллекторов, тыс. Гкал	41,8	40,2	37,6	39,9	46,4	46,0	45,9	32,7	32,6	32,5	32,4	32,2
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,117	0,117	0,117	0,117	0,117	0,117	0,117	0,117	0,117	0,117	0,117	0,117
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	41,696	40,066	37,464	39,826	46,329	45,880	45,794	32,546	32,454	32,356	32,254	32,061
Потери тепловой энергии в тепловых сетях, тыс. Гкал	10,031	4,915	5,799	6,032	6,662	6,593	6,564	5,277	5,242	5,202	5,157	4,964
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	31,665	35,151	31,665	33,795	39,667	39,287	39,229	27,269	27,212	27,154	27,096	27,096
Коэффициент использования установленной тепловой мощности, %	15,7	15,1	14,1	14,9	17,3	17,1	17,1	12,3	12,3	12,3	12,2	12,1

Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	162,5	162,5	165,2	163,7	163,7	163,7	163,7	163,7	163,7	163,7	163,7	163,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	6,795	6,530	6,208	6,541	7,605	7,532	7,518	5,348	5,333	5,317	5,301	5,269
Теплота сгорания природного газа, ккал/н.м³	8181	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	6,79	6,53	6,21	6,54	7,61	7,53	7,52	5,35	5,33	5,32	5,30	5,27
Расход природного газа на отпуск тепловой энергии, млн. н. м³	5,81	5,78	5,49	5,79	6,73	6,67	6,65	4,73	4,72	4,71	4,69	4,66
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	12,50	14,39	15,15	15,75	17,42	17,27	17,25	13,92	13,90	13,88	13,85	13,85
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	4,87	5,57	5,75	5,93	6,54	6,39	6,37	5,16	5,19	5,09	5,04	4,86
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	2,57	2,91	2,96	3,02	3,32	3,20	3,19	2,59	2,62	2,53	2,48	2,30
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,032	2,338	2,502	2,580	2,852	2,828	2,824	2,280	2,276	2,272	2,269	2,269
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,791	0,905	0,950	0,971	1,071	1,047	1,043	0,844	0,849	0,834	0,825	0,795
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,417	0,474	0,489	0,495	0,544	0,525	0,522	0,424	0,430	0,415	0,407	0,377
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	8,90	8,90	8,90	8,90	8,90	8,90	8,90	8,90	8,90	8,90	8,90	8,90
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	6,85	6,85	6,85	6,85	6,85	6,85	6,85	6,85	6,85	6,85	6,85	6,85
Расход условного топлива в самые холодные сутки, т.у.т./сут	35	35	35	35	35	35	35	35	35	35	35	35
Расход мазута в самые холодные сутки, т.н.т/сут	25	25	25	25	25	25	25	25	25	25	25	25
Нормативный неснижаемый запас мазута, т.н.т.	79	79	81	81	80	80	80	80	80	80	80	80
Нормативный эксплуатационный запас мазута, т.н.т.	31	31	35	35	35	35	35	35	35	35	35	35
2.03 14 в/г №72 (п. Черемушки)	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	26,51	26,51	26,51	26,51	26,51	26,51	26,51	26,51	26,51	26,51	26,51	26,51
Располагаемая тепловая мощность, Гкал/ч	1,47	1,47	1,47	1,47	1,47	1,47	1,47	1,47	1,47	1,47	1,47	1,47
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298	0,298
Средневзвешенный срок службы, лет	34	35	36	37	38	39	40	41	42	43	44	48
Выработка тепловой энергии, тыс. Гкал	34,343	36,887	36,610	39,007	39,001	38,988	38,969	38,943	38,912	38,874	38,829	38,595
Собственные нужды тепловой энергии, тыс. Гкал	1,370	1,472	1,461	1,461	1,461	1,461	1,461	1,461	1,461	1,461	1,461	1,461
Отпуск тепловой энергии с коллекторов, тыс. Гкал	33,0	35,4	35,1	37,5	37,5	37,5	37,5	37,5	37,5	37,4	37,4	37,1
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,2	0,2	0,172	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	32,801	35,243	34,977	37,374	37,368	37,355	37,336	37,310	37,278	37,240	37,196	36,962

Потери тепловой энергии в тепловых сетях, тыс. Гкал	3,986	6,167	6,162	6,427	6,421	6,408	6,389	6,363	6,331	6,293	6,249	6,015
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	28,815	29,076	28,815	30,947	30,947	30,947	30,947	30,947	30,947	30,947	30,947	30,947
Коэффициент использования установленной тепловой мощности, %	14,8	15,9	15,8	16,8	16,8	16,8	16,8	16,8	16,8	16,7	16,7	16,6
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	162,2	162,2	163,1	163,1	161,9	161,9	161,9	161,9	161,9	161,9	161,9	161,9
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	5,348	5,744	5,733	6,124	6,077	6,075	6,072	6,067	6,062	6,056	6,049	6,011
Теплота сгорания природного газа, ккал/н.м³	8164	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	5,35	5,74	5,73	6,12	6,08	6,07	6,07	6,07	6,06	6,06	6,05	6,01
Расход природного газа на отпуск тепловой энергии, млн. н. м³	4,59	5,08	5,07	5,42	5,38	5,38	5,37	5,37	5,36	5,36	5,35	5,32
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	14,27	14,33	14,33	14,94	14,94	14,94	14,94	14,94	14,94	14,94	14,94	14,94
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	7,13	7,14	7,12	7,35	7,31	7,30	7,30	7,29	7,28	7,27	7,26	7,22
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	4,78	4,77	4,76	4,88	4,84	4,83	4,82	4,81	4,80	4,79	4,78	4,75
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,315	2,324	2,337	2,437	2,419	2,419	2,419	2,419	2,419	2,419	2,419	2,419
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	1,157	1,157	1,162	1,199	1,184	1,182	1,181	1,179	1,178	1,176	1,175	1,169
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,775	0,775	0,777	0,796	0,783	0,782	0,780	0,779	0,777	0,776	0,774	0,768
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	10,53	10,53	10,53	10,53	10,53	10,53	10,53	10,53	10,53	10,53	10,53	10,53
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10	8,10
Расход условного топлива в самые холодные сутки, т.у.т./сут	41	41	41	41	41	41	41	41	41	41	41	41
Расход мазута в самые холодные сутки, т.н.т/сут	30	30	30	30	30	30	30	30	30	30	30	30
Нормативный неснижаемый запас мазута, т.н.т.	90	90	101	101	110	110	110	110	110	110	110	110
Нормативный эксплуатационный запас мазута, т.н.т.	90	90	83	83	90	90	90	90	90	90	90	90
2.04 п. Светлый	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	28,50	28,50	28,50	28,50	28,50	28,50	28,50	28,50	28,50	28,50	28,50	28,50
Располагаемая тепловая мощность, Гкал/ч	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72	0,72
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,395	0,395	0,395	0,395	0,395	0,395	0,395	0,395	0,395	0,395	0,395	0,395
Средневзвешенный срок службы, лет	31	32	33	34	35	36	37	38	39	40	41	45
Выработка тепловой энергии, тыс. Гкал	48,274	47,704	43,134	43,982	43,972	43,952	43,922	43,883	43,833	43,775	43,707	43,345
Собственные нужды тепловой энергии, тыс. Гкал	1,926	1,904	1,721	1,721	1,721	1,721	1,721	1,721	1,721	1,721	1,721	1,721

Отпуск тепловой энергии с коллекторов, тыс. Гкал	46,3	45,8	41,4	42,3	42,3	42,2	42,2	42,2	42,1	42,1	42,0	41,6
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,121	0,121	0,121	0,121	0,121	0,121	0,121	0,121	0,121	0,121	0,121	0,121
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	46,227	45,679	41,292	42,140	42,130	42,110	42,080	42,041	41,992	41,933	41,865	41,503
Потери тепловой энергии в тепловых сетях, тыс. Гкал	14,732	9,902	9,797	9,930	9,920	9,900	9,871	9,831	9,782	9,723	9,655	9,293
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	31,495	35,777	31,495	32,210	32,210	32,210	32,210	32,210	32,210	32,210	32,210	32,210
Коэффициент использования установленной тепловой мощности, %	19,3	19,1	17,3	17,6	17,6	17,6	17,6	17,6	17,6	17,5	17,5	17,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,7	161,7	161,7	161,7	161,7	159,9	159,9	159,9	159,9	159,9	159,9	159,9
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	7,494	7,406	6,696	6,834	6,832	6,755	6,750	6,744	6,736	6,726	6,716	6,658
Теплота сгорания природного газа, ккал/н.м³	8162	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	7,49	7,41	6,70	6,83	6,83	6,75	6,75	6,74	6,74	6,73	6,72	6,66
Расход природного газа на отпуск тепловой энергии, млн. н. м³	6,43	6,55	5,93	6,05	6,05	5,98	5,97	5,97	5,96	5,95	5,94	5,89
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	15,00	15,45	15,45	15,66	15,66	15,66	15,66	15,66	15,66	15,66	15,66	15,66
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	6,90	6,97	6,92	6,96	6,92	6,88	6,85	6,81	6,78	6,74	6,71	6,57
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	4,21	4,20	4,14	4,15	4,10	4,07	4,03	4,00	3,96	3,93	3,89	3,75
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,425	2,499	2,499	2,532	2,532	2,505	2,505	2,505	2,505	2,505	2,505	2,505
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	1,116	1,128	1,118	1,126	1,118	1,101	1,095	1,089	1,084	1,078	1,073	1,050
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,680	0,679	0,670	0,671	0,663	0,651	0,645	0,639	0,634	0,628	0,623	0,600
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	11,35	11,35	11,35	11,35	11,35	11,35	11,35	11,35	11,35	11,35	11,35	11,35
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	8,73	8,73	8,73	8,73	8,73	8,73	8,73	8,73	8,73	8,73	8,73	8,73
Расход условного топлива в самые холодные сутки, т.у.т./сут	44	44	44	44	44	44	44	44	44	44	44	44
Расход мазута в самые холодные сутки, т.н.т/сут	32	32	32	32	32	31	31	31	31	31	31	31
Нормативный неснижаемый запас мазута, т.н.т.	128	128	103	103	107	106	106	106	106	106	106	106
Нормативный эксплуатационный запас мазута, т.н.т.	76	76	70	70	73	72	72	72	72	72	72	72
2.05 ул. К. Заслонова, 2	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	64,83	64,83	64,83	64,83	64,83	64,83	64,83	64,83	64,83	64,83	64,83	64,83
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,884	0,884	0,884	0,884	0,884	0,884	0,884	0,884	0,884	0,884	0,884	0,884

Средневзвешенный срок службы, лет	38	39	40	41	42	43	44	45	46	47	48	52
Выработка тепловой энергии, тыс. Гкал	106,737	103,289	101,351	101,351	100,574	100,475	100,407	100,327	100,237	100,135	100,022	99,605
Собственные нужды тепловой энергии, тыс. Гкал	4,184	4,049	3,973	3,973	3,973	3,973	3,973	3,973	3,973	3,973	3,973	3,973
Отпуск тепловой энергии с коллекторов, тыс. Гкал	102,6	99,2	97,4	97,4	96,6	96,5	96,4	96,4	96,3	96,2	96,0	95,6
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,398	0,398
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	102,155	98,842	96,980	96,980	96,203	96,104	96,036	95,956	95,866	95,764	95,651	95,234
Потери тепловой энергии в тепловых сетях, тыс. Гкал	16,748	11,557	11,573	11,573	11,476	11,444	11,406	11,356	11,296	11,224	11,142	10,724
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	85,407	87,285	85,407	85,407	84,727	84,660	84,630	84,600	84,570	84,540	84,510	84,510
Коэффициент использования установленной тепловой мощности, %	18,8	18,2	17,8	17,8	17,7	17,7	17,7	17,7	17,7	17,6	17,6	17,5
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	159,3	159,3	161,7	161,7	161,7	158,1	158,1	158,1	158,1	158,1	158,1	158,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	16,337	15,809	15,746	15,746	15,620	15,257	15,246	15,233	15,219	15,203	15,185	15,119
Теплота сгорания природного газа, ккал/н.м³	8173	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	16,34	15,81	15,75	15,75	15,62	15,26	15,25	15,23	15,22	15,20	15,19	15,12
Расход природного газа на отпуск тепловой энергии, млн. н. м³	13,99	13,99	13,93	13,93	13,82	13,50	13,49	13,48	13,47	13,45	13,44	13,38
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	33,56	33,39	33,29	33,29	33,04	33,01	33,00	32,99	32,98	32,97	32,96	32,96
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	10,35	10,27	10,20	10,16	10,05	10,02	9,98	9,94	9,89	9,85	9,81	9,65
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	4,20	4,15	4,10	4,06	4,00	3,97	3,93	3,89	3,85	3,81	3,77	3,61
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	5,346	5,319	5,382	5,382	5,343	5,219	5,218	5,216	5,214	5,212	5,210	5,210
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	1,649	1,635	1,649	1,643	1,626	1,584	1,578	1,571	1,564	1,558	1,551	1,526
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,669	0,660	0,662	0,657	0,646	0,627	0,621	0,615	0,608	0,602	0,596	0,571
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	23,11	23,11	23,11	23,11	23,11	23,11	23,11	23,11	23,11	23,11	23,11	23,11
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	17,78	17,78	17,78	17,78	17,78	17,78	17,78	17,78	17,78	17,78	17,78	17,78
Расход условного топлива в самые холодные сутки, т.у.т./сут	88	88	90	90	90	88	88	88	88	88	88	88
Расход мазута в самые холодные сутки, т.н.т/сут	64	64	65	65	65	63	63	63	63	63	63	63
Нормативный неснижаемый запас мазута, т.н.т.	346	349	278	278	278	272	272	272	272	272	272	272
Нормативный эксплуатационный запас мазута, т.н.т.	155	156	138	138	138	135	135	135	135	135	135	135
2.06 п. Черемуховское, ул. Захаренко, 29/1	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033

Установленная тепловая мощность, Гкал/ч	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40	0,40
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Средневзвешенный срок службы, лет	14	15	16	17	18	19	20	21	22	23	24	28
Выработка тепловой энергии, тыс. Гкал	0,645	0,777	0,708	0,708	0,708	0,708	0,707	0,706	0,706	0,705	0,704	0,698
Собственные нужды тепловой энергии, тыс. Гкал	0,015	0,018	0,016	0,016	0,016	0,016	0,016	0,016	0,016	0,016	0,016	0,016
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,63	0,76	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,68
Хозяйственные нужды тепловой энергии, тыс. Гкал	0	0	0	0	0	0	0	0	0	0	0	0
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,630	0,759	0,692	0,692	0,692	0,692	0,691	0,690	0,690	0,689	0,688	0,682
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,100	0,162	0,162	0,162	0,162	0,162	0,161	0,160	0,160	0,159	0,158	0,152
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,530	0,597	0,530	0,530	0,530	0,530	0,530	0,530	0,530	0,530	0,530	0,530
Коэффициент использования установленной тепловой мощности, %	18,4	22,2	20,2	20,2	20,2	20,2	20,2	20,2	20,1	20,1	20,1	19,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	156,9	156,9	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,099	0,119	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,110	0,110
Теплота сгорания природного газа, ккал/н.м³	8135	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	0,10	0,12	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Расход природного газа на отпуск тепловой энергии, млн. н. м³	0,09	0,11	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,07	0,07	0,07	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,03	0,03	0,03	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,02	0,02
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,033	0,033	0,034	0,034	0,034	0,034	0,034	0,034	0,034	0,034	0,034	0,034
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12	0,12
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,563	0,563	0,577	0,577	0,577	0,577	0,577	0,577	0,577	0,577	0,577	0,577

Расход дизельного топлива в самые холодные сутки, т.н.т/сут	0,383	0,383	0,392	0,392	0,392	0,392	0,392	0,392	0,392	0,392	0,392	0,392
Нормативный неснижаемый запас дизельного топлива, т.н.т.	2	2	2	2	2	2	2	2	2	2	2	2
2.07 п. Новая Станица, ул. Поморцева, 50/1	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18	0,18
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Средневзвешенный срок службы, лет	14	15	16	17	18	19	20	21	22	23	24	28
Выработка тепловой энергии, тыс. Гкал	0,238	0,297	0,295	0,295	0,295	0,295	0,294	0,294	0,294	0,293	0,293	0,289
Собственные нужды тепловой энергии, тыс. Гкал	0,005	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,23	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,29	0,28
Хозяйственные нужды тепловой энергии, тыс. Гкал	0	0	0	0	0	0	0	0	0	0	0	0
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,233	0,290	0,288	0,288	0,288	0,288	0,287	0,287	0,287	0,286	0,286	0,282
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,033	0,088	0,088	0,088	0,088	0,088	0,087	0,087	0,087	0,086	0,086	0,082
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,200	0,202	0,200	0,200	0,200	0,200	0,200	0,200	0,200	0,200	0,200	0,200
Коэффициент использования установленной тепловой мощности, %	15,1	18,8	18,7	18,7	18,7	18,7	18,7	18,7	18,6	18,6	18,6	18,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	159,1	159,1	160,1	160,1	160,1	160,1	160,1	160,1	160,1	160,1	160,1	160,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,037	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,046	0,045
Теплота сгорания природного газа, ккал/н.м³	8141	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Расход природного газа на отпуск тепловой энергии, млн. н. м³	0,03	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,227	0,227	0,228	0,228	0,228	0,228	0,228	0,228	0,228	0,228	0,228	0,228
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	0,154	0,154	0,155	0,155	0,155	0,155	0,155	0,155	0,155	0,155	0,155	0,155
Нормативный неснижаемый запас дизельного топлива, т.н.т.	1	1	1	1	1	1	1	1	1	1	1	1
2.08 ул. 4-я Ленинградская, 48	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	3,44	3,44	3,44	3,44	3,44	3,44	3,44	3,44	3,44	3,44	3,44	3,44
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,028	0,028	0,028	0,028	0,028	0,028	0,028	0,028	0,028	0,028	0,028	0,028
Средневзвешенный срок службы, лет	14	15	16	17	18	19	20	21	22	23	24	28
Выработка тепловой энергии, тыс. Гкал	6,380	6,096	5,924	5,924	5,924	5,923	5,922	5,920	5,918	5,916	5,913	5,899
Собственные нужды тепловой энергии, тыс. Гкал	0,144	0,138	0,134	0,134	0,134	0,134	0,134	0,134	0,134	0,134	0,134	0,134
Отпуск тепловой энергии с коллекторов, тыс. Гкал	6,24	5,96	5,79	5,79	5,79	5,79	5,79	5,79	5,78	5,78	5,78	5,76
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	6,236	5,958	5,790	5,790	5,790	5,789	5,788	5,786	5,784	5,782	5,779	5,765
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,841	0,394	0,395	0,395	0,395	0,394	0,393	0,391	0,389	0,387	0,384	0,370
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	5,395	5,564	5,395	5,395	5,395	5,395	5,395	5,395	5,395	5,395	5,395	5,395
Коэффициент использования установленной тепловой мощно- сти, %	21,2	20,2	19,7	19,7	19,7	19,7	19,7	19,6	19,6	19,6	19,6	19,6
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	156,1	156,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,973	0,930	0,921	0,921	0,921	0,921	0,921	0,921	0,920	0,920	0,919	0,917
Теплота сгорания природного газа, ккал/н.м³	8182	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	0,97	0,93	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92
Расход природного газа на отпуск тепловой энергии, млн. н. м³	0,83	0,82	0,82	0,82	0,82	0,82	0,81	0,81	0,81	0,81	0,81	0,81
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	2,29	2,29	2,29	2,29	2,29	2,29	2,29	2,29	2,29	2,29	2,29	2,29
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,68	0,68	0,67	0,67	0,67	0,67	0,67	0,66	0,66	0,66	0,66	0,65
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,26	0,26	0,25	0,25	0,25	0,25	0,25	0,24	0,24	0,24	0,24	0,23
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,357	0,357	0,364	0,364	0,364	0,364	0,364	0,364	0,364	0,364	0,364	0,364

Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,106	0,105	0,107	0,107	0,106	0,106	0,106	0,106	0,105	0,105	0,105	0,103
Максимальный часовой расход условного топлива в летний период. т.у.т/ч	0,040	0,040	0,040	0,040	0,040	0,039	0,039	0,039	0,038	0,038	0,038	0,037
Средняя тепловая нагрузка на коллекторах в самый холодный месяц. Гкал/ч	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55	1,55
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19
Расход условного топлива в самые холодные сутки, т.у.т./сут	6	6	6	6	6	6	6	6	6	6	6	6
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	4	4	4	4	4	4	4	4	4	4	4	4
Нормативный неснижаемый запас дизельного топлива, т.н.т.	19	19	10	10	10	10	10	10	10	10	10	10
2.09 ул. Гуртьевской дивизии, 7 (п. Карьер)	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Средневзвешенный срок службы, лет	12	13	14	15	16	17	18	19	20	21	22	26
Выработка тепловой энергии, тыс. Гкал	0,534	0,484	0,604	0,604	0,604	0,604	0,603	0,603	0,602	0,601	0,600	0,595
Собственные нужды тепловой энергии, тыс. Гкал	0,026	0,024	0,030	0,030	0,030	0,030	0,030	0,030	0,030	0,030	0,030	0,030
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,51	0,46	0,57	0,57	0,57	0,57	0,57	0,57	0,57	0,57	0,57	0,57
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,507	0,460	0,574	0,574	0,574	0,574	0,573	0,573	0,572	0,571	0,570	0,565
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,073	0,012	0,140	0,140	0,140	0,140	0,139	0,139	0,138	0,137	0,136	0,131
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,434	0,448	0,434	0,434	0,434	0,434	0,434	0,434	0,434	0,434	0,434	0,434
Коэффициент использования установленной тепловой мощности, %	17,9	16,3	20,3	20,3	20,3	20,3	20,3	20,2	20,2	20,2	20,1	20,0
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	233,9	233,9	234,1	234,1	234,1	234,1	234,1	234,1	234,1	234,1	234,1	234,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,119	0,108	0,134	0,134	0,134	0,134	0,134	0,134	0,134	0,134	0,133	0,132
Теплота сгорания угля, ккал/кг	4310	3796	4200	4200	4200	4200	4200	4200	4200	4200	4200	4200
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,12	0,11	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
Расход угля на отпуск тепловой энергии, тыс. т.н.т	0,19	0,20	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22	0,22
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038	0,038

Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,010	0,009
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,642	0,642	0,643	0,643	0,643	0,643	0,643	0,643	0,643	0,643	0,643	0,643
Расход угля в самые холодные сутки, т.н.т/сут	1	1	1	1	1	1	1	1	1	1	1	1
Нормативный неснижаемый запас угля, т.н.т.	6	6	8	8	8	8	8	8	8	8	8	8
Нормативный эксплуатационный запас угля, т.н.т.	53	53	43	43	43	43	43	43	43	43	43	43
2.35 ул. Архиепископа Сильвестра, 21	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	10,32	10,32	10,32	10,32	10,32	10,32	10,32	10,32	10,32	10,32	10,32	10,32
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092
Средневзвешенный срок службы, лет	5	6	7	8	9	10	11	12	13	14	15	19
Выработка тепловой энергии, тыс. Гкал	21,157	21,748	18,254	29,704	30,575	30,575	30,574	30,574	30,573	30,572	30,571	30,566
Собственные нужды тепловой энергии, тыс. Гкал	0,478	0,491	0,413	0,413	0,413	0,413	0,413	0,413	0,413	0,413	0,413	0,413
Отпуск тепловой энергии с коллекторов, тыс. Гкал	20,68	21,26	17,84	29,29	30,16	30,16	30,16	30,16	30,16	30,16	30,16	30,15
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	20,679	21,257	17,841	29,291	30,162	30,162	30,161	30,161	30,160	30,159	30,158	30,153
Потери тепловой энергии в тепловых сетях, тыс. Гкал	2,925	0,088	0,088	0,132	0,136	0,136	0,135	0,135	0,134	0,133	0,132	0,127
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	17,753	21,169	17,753	29,159	30,026	30,026	30,026	30,026	30,026	30,026	30,026	30,026
Коэффициент использования установленной тепловой мощности, %	23,4	24,1	20,2	32,9	33,8	33,8	33,8	33,8	33,8	33,8	33,8	33,8
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,2	161,2	159,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1	159,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	3,333	3,427	2,838	4,660	4,799	4,799	4,799	4,799	4,798	4,798	4,798	4,797
Теплота сгорания природного газа, ккал/н.м³	8175	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	3,33	3,43	2,84	4,66	4,80	4,80	4,80	4,80	4,80	4,80	4,80	4,80
Расход природного газа на отпуск тепловой энергии, млн. н. м³	2,85	3,03	2,51	4,12	4,25	4,25	4,25	4,25	4,25	4,25	4,25	4,25
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	6,36	6,78	6,78	10,20	10,53	10,53	10,53	10,53	10,53	10,53	10,53	10,53

Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,93	2,17	2,14	3,39	3,30	3,28	3,27	3,26	3,26	3,25	3,24	3,21
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,76	0,92	0,90	1,52	1,36	1,34	1,33	1,33	1,32	1,31	1,30	1,28
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	1,026	1,093	1,079	1,623	1,675	1,675	1,675	1,675	1,675	1,675	1,675	1,675
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,311	0,350	0,341	0,540	0,525	0,521	0,520	0,519	0,518	0,517	0,516	0,511
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,123	0,149	0,142	0,241	0,217	0,213	0,212	0,211	0,210	0,209	0,208	0,203
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36	4,36
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	3,36	3,36	3,36	3,36	3,36	3,36	3,36	3,36	3,36	3,36	3,36	3,36
Расход условного топлива в самые холодные сутки, т.у.т./сут	17	17	17	17	17	17	17	17	17	17	17	17
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	11	11	11	11	12	12	11	11	11	11	12	12
Нормативный неснижаемый запас дизельного топлива, т.н.т.	48	48	31	31	33	33	23	23	23	23	33	33
3.01 п. Осташково, ул. Ноябрьская, 15	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60	0,60
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Средневзвешенный срок службы, лет	13	14	15	16	17	18	19	20	21	22	23	27
Выработка тепловой энергии, тыс. Гкал	0,168	0,202	0,206	0,206	0,206	0,206	0,205	0,205	0,205	0,205	0,205	0,203
Собственные нужды тепловой энергии, тыс. Гкал	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,16	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,164	0,199	0,202	0,202	0,202	0,202	0,202	0,201	0,201	0,201	0,201	0,199
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,001	0,039	0,039	0,039	0,039	0,038	0,038	0,038	0,038	0,038	0,038	0,036
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,163	0,160	0,163	0,163	0,163	0,163	0,163	0,163	0,163	0,163	0,163	0,163
Коэффициент использования установленной тепловой мощности, %	3,2	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9	3,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,7	161,7	159,0	159,0	159,0	159,0	159,0	159,0	159,0	159,0	159,0	159,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,027	0,032	0,032	0,032	0,032	0,032	0,032	0,032	0,032	0,032	0,032	0,032
Теплота сгорания природного газа, ккал/н.м³	8133	7908	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Расход природного газа на отпуск тепловой энергии, млн. н. м³	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Теплота сгорания угля, ккал/кг	5084	5084	5084	5084	5084	5084	5084	5084	5084	5084	5084	5084
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Расход угля на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08	0,08
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,203	0,203	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199	0,199
Расход угля в самые холодные сутки, т.н.т/сут	0,279	0,279	0,275	0,275	0,275	0,275	0,275	0,275	0,275	0,275	0,275	0,275
Нормативный неснижаемый запас угля, т.н.т.	2	2	3	3	3	3	3	3	3	3	3	3
3.02 Крутая Горка, ул. Российская, 4а	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	29,07	29,07	29,07	29,07	29,07	29,07	29,07	29,07	29,07	29,07	29,07	29,07
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,451	0,451	0,451	0,451	0,451	0,451	0,451	0,451	0,451	0,451	0,451	0,451
Средневзвешенный срок службы, лет	26	27	28	29	30	31	32	33	34	35	36	40
Выработка тепловой энергии, тыс. Гкал	49,368	52,336	52,501	52,501	52,494	52,479	52,458	52,429	52,393	52,349	52,300	52,034
Собственные нужды тепловой энергии, тыс. Гкал	1,935	2,051	2,058	2,058	2,058	2,058	2,058	2,058	2,058	2,058	2,058	2,058
Отпуск тепловой энергии с коллекторов, тыс. Гкал	47,4	50,3	50,4	50,4	50,4	50,4	50,4	50,4	50,3	50,3	50,2	50,0
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,405	0,405	0,405	0,405	0,405	0,405	0,405	0,405	0,405	0,405	0,405	0,405
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	47,027	49,880	50,038	50,038	50,031	50,016	49,994	49,965	49,929	49,886	49,836	49,571
Потери тепловой энергии в тепловых сетях, тыс. Гкал	4,276	7,402	7,287	7,287	7,280	7,265	7,243	7,214	7,178	7,135	7,085	6,820
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	42,751	42,478	42,751	42,751	42,751	42,751	42,751	42,751	42,751	42,751	42,751	42,751
Коэффициент использования установленной тепловой мощности, %	19,4	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,6	20,5	20,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,2	161,2	161,9	161,9	161,9	159,4	159,4	159,4	159,4	159,4	159,4	159,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	7,646	8,106	8,167	8,167	8,166	8,038	8,035	8,030	8,024	8,017	8,009	7,967
Теплота сгорания природного газа, ккал/н.м³	8141	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	7,65	8,11	8,17	8,17	8,17	8,04	8,03	8,03	8,02	8,02	8,01	7,97
Расход природного газа на отпуск тепловой энергии, млн. н. м³	6,57	7,17	7,23	7,23	7,23	7,11	7,11	7,11	7,10	7,09	7,09	7,05

Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	18,42	18,42	18,42	18,42	18,42	18,42	18,42	18,42	18,42	18,42	18,42	18,42
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	5,20	5,19	5,18	5,17	5,16	5,15	5,14	5,13	5,12	5,11	5,10	5,06
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	1,82	1,81	1,80	1,79	1,78	1,77	1,76	1,75	1,74	1,73	1,72	1,68
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,969	2,969	2,982	2,982	2,982	2,936	2,936	2,936	2,936	2,936	2,936	2,936
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,839	0,837	0,839	0,837	0,836	0,821	0,820	0,818	0,816	0,815	0,813	0,807
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,294	0,292	0,292	0,290	0,289	0,283	0,281	0,279	0,278	0,276	0,274	0,268
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	12,30	12,30	12,30	12,30	12,30	12,30	12,30	12,30	12,30	12,30	12,30	12,30
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	9,46	9,46	9,46	9,46	9,46	9,46	9,46	9,46	9,46	9,46	9,46	9,46
Расход условного топлива в самые холодные сутки, т.у.т./сут	48	48	48	48	48	47	47	47	47	47	47	47
Расход мазута в самые холодные сутки, т.н.т/сут	34	34	34	34	34	34	34	34	34	34	34	34
Нормативный неснижаемый запас мазута, т.н.т.	185	185	158	158	158	156	156	156	156	156	156	156
4.01 п. Береговой, ул. Иртышская, 1/3	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	27,08	27,08	27,08	27,08	27,08	27,08	27,08	27,08	27,08	27,08	27,08	27,08
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,387	0,387	0,387	0,387	0,387	0,387	0,387	0,387	0,387	0,387	0,387	0,387
Средневзвешенный срок службы, лет	17	18	19	20	21	22	23	24	25	26	27	31
Выработка тепловой энергии, тыс. Гкал	47,548	54,957	55,504	54,299	53,703	53,338	53,100	52,841	52,563	52,264	51,946	51,175
Собственные нужды тепловой энергии, тыс. Гкал	1,864	2,154	2,121	2,121	2,121	2,121	2,121	2,121	2,121	2,121	2,121	2,121
Отпуск тепловой энергии с коллекторов, тыс. Гкал	45,7	52,8	53,4	52,2	51,6	51,2	51,0	50,7	50,4	50,1	49,8	49,1
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,143	0,143	0,143	0,143	0,143	0,143	0,143	0,143	0,143	0,143	0,143	0,143
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	45,541	52,660	53,240	52,035	51,439	51,074	50,836	50,577	50,298	50,000	49,682	48,911
Потери тепловой энергии в тепловых сетях, тыс. Гкал	15,436	21,808	21,723	21,828	21,608	21,446	21,314	21,161	20,987	20,794	20,582	19,811
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	30,105	30,852	30,105	30,207	29,831	29,627	29,522	29,417	29,311	29,206	29,101	29,101
Коэффициент использования установленной тепловой мощности, %	20,0	23,2	23,398	22,9	22,6	22,5	22,4	22,3	22,2	22,0	21,9	21,6
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,5	161,5	161,5	156,0	155,0	155,0	155,0	155,0	155,0	155,0	155,0	155,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	7,378	8,528	8,621	8,138	7,995	7,938	7,901	7,861	7,818	7,772	7,722	7,603
Теплота сгорания природного газа, ккал/н.м³	8144	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910

Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	7,38	8,53	8,62	8,14	7,99	7,94	7,90	7,86	7,82	7,77	7,72	7,60
Расход природного газа на отпуск тепловой энергии, млн. н. м³	6,34	7,55	7,63	7,20	7,07	7,02	6,99	6,96	6,92	6,88	6,83	6,73
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	12,71	12,70	13,49	13,56	13,43	13,36	13,32	13,28	13,23	13,19	13,15	13,15
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	4,85	4,81	5,10	5,04	4,96	4,91	4,87	4,82	4,78	4,73	4,69	4,54
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	2,54	2,50	2,64	2,57	2,52	2,48	2,44	2,41	2,37	2,33	2,30	2,15
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,052	2,051	2,52	2,114	2,082	2,071	2,064	2,058	2,051	2,044	2,038	2,038
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,783	0,777	0,85	0,786	0,769	0,761	0,754	0,747	0,740	0,734	0,727	0,704
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,410	0,404	0,44	0,401	0,390	0,384	0,379	0,373	0,368	0,362	0,356	0,334
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	9,45	9,45	9,64	9,64	9,64	9,64	9,64	9,64	9,64	9,64	9,64	9,64
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	7,27	7,27	7,41	7,41	7,41	7,41	7,41	7,41	7,41	7,41	7,41	7,41
Расход условного топлива в самые холодные сутки, т.у.т./сут	37	37	37	36	36	36	36	36	36	36	36	36
Расход мазута в самые холодные сутки, т.н.т/сут	26	26	27	26	26	26	26	26	26	26	26	26
Нормативный неснижаемый запас мазута, т.н.т.	194	194	145	145	142	142	142	142	142	142	142	142
Нормативный эксплуатационный запас мазута, т.н.т.	89	91	81	81	80	80	80	80	80	80	80	80
4.02 п. Большие Поля, ул. Комсомольская, 3	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	13,26	13,26	13,26	13,26	13,26	13,26	13,26	13,26	13,26	13,26	13,26	13,26
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086
Средневзвешенный срок службы, лет	17	18	19	20	21	22	23	24	25	26	27	31
Выработка тепловой энергии, тыс. Гкал	9,524	11,043	11,131	12,439	12,435	12,428	12,416	12,401	12,383	12,360	12,334	13,267
Собственные нужды тепловой энергии, тыс. Гкал	0,368	0,426	0,430	0,430	0,430	0,430	0,430	0,430	0,430	0,430	0,430	0,430
Отпуск тепловой энергии с коллекторов, тыс. Гкал	9,2	10,6	10,7	12,0	12,0	12,0	12,0	12,0	12,0	11,9	11,9	12,8
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,079	0,079	0,079	0,079	0,079	0,079	0,079	0,079	0,079	0,079	0,079	0,079
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	9,077	10,538	10,621	11,929	11,926	11,918	11,907	11,892	11,873	11,851	11,825	12,757
Потери тепловой энергии в тепловых сетях, тыс. Гкал	2,244	3,793	3,788	3,783	3,779	3,772	3,760	3,745	3,727	3,704	3,678	3,813
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	6,833	6,745	6,833	8,146	8,146	8,146	8,146	8,146	8,146	8,146	8,146	8,944
Коэффициент использования установленной тепловой мощности, %	8,2	9,5	9,6	10,7	10,7	10,7	10,7	10,7	10,7	10,6	10,6	11,4

Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	157,8	157,8	158,8	158,8	158,8	158,8	158,8	158,8	158,8	158,8	158,8	158,8
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	1,445	1,675	1,699	1,907	1,906	1,905	1,903	1,901	1,898	1,894	1,890	2,038
Теплота сгорания природного газа, ккал/н.м³	8138	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	1,44	1,68	1,70	1,91	1,91	1,91	1,90	1,90	1,90	1,89	1,89	2,04
Расход природного газа на отпуск тепловой энергии, млн. н. м³	1,24	1,48	1,50	1,69	1,69	1,69	1,68	1,68	1,68	1,68	1,67	1,80
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	2,74	2,76	3,03	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,47	3,74
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,93	0,93	1,02	1,14	1,11	1,10	1,09	1,08	1,07	1,06	1,05	1,09
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,47	0,50	0,47	0,46	0,46	0,45	0,44	0,43	0,42	0,41
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,432	0,435	0,481	0,551	0,551	0,551	0,551	0,551	0,551	0,551	0,551	0,594
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,147	0,146	0,162	0,181	0,176	0,174	0,173	0,172	0,170	0,169	0,167	0,174
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,000	0,000	0,075	0,080	0,075	0,074	0,072	0,071	0,070	0,068	0,067	0,065
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59	1,59
Расход условного топлива в самые холодные сутки, т.у.т./сут	8	8	8	8	8	8	8	8	8	8	8	8
Расход мазута в самые холодные сутки, т.н.т/сут	6	6	6	6	6	6	6	6	6	6	6	6
Нормативный неснижаемый запас мазута, т.н.т.	41	40	39	39	39	39	39	39	39	39	39	39
5.01 ул. 4-я Северная, 180	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	106,40	106,40	106,40	106,40	106,40	106,40	106,40	106,40	106,40	106,40	106,40	106,40
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,698	0,698	0,698	0,698	0,698	0,698	0,698	0,698	0,698	0,698	0,698	0,698
Средневзвешенный срок службы, лет	43	44	45	46	47	48	49	50	51	52	53	57
Выработка тепловой энергии, тыс. Гкал	88,875	89,476	88,862	88,862	88,851	88,687	88,875	89,054	89,221	89,379	89,526	94,918
Собственные нужды тепловой энергии, тыс. Гкал	3,546	3,570	3,546	3,546	3,546	3,546	3,546	3,546	3,546	3,546	3,546	3,546
Отпуск тепловой энергии с коллекторов, тыс. Гкал	85,3	85,9	85,3	85,3	85,3	85,1	85,3	85,5	85,7	85,8	86,0	91,4
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,073	0,073	0,073	0,073	0,073	0,073	0,073	0,073	0,073	0,073	0,073	0,073
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	85,256	85,833	85,243	85,243	85,232	85,068	85,257	85,435	85,602	85,760	85,907	91,299
Потери тепловой энергии в тепловых сетях, тыс. Гкал	10,564	10,944	10,551	10,551	10,540	10,511	10,494	10,467	10,429	10,382	10,323	10,311

Полезный отпуск тепловой энергии потребителям, тыс. Гкал	74,692	74,889	74,692	74,692	74,692	74,557	74,763	74,968	75,173	75,378	75,583	80,988
Коэффициент использования установленной тепловой мощности. %	9,5	9,6	9,5	9,5	9,5	9,5	9,5	9,6	9,6	9,6	9,6	10,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,5	161,5	159,6	159,6	159,6	159,6	159,6	159,6	159,6	159,6	159,6	159,6
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	13,781	13,874	13,613	13,613	13,612	13,585	13,616	13,644	13,671	13,696	13,719	14,580
Теплота сгорания природного газа, ккал/н.м³	8160	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	13,78	13,87	13,61	13,61	13,61	13,59	13,62	13,64	13,67	13,70	13,72	14,58
Расход природного газа на отпуск тепловой энергии, млн. н. м³	11,82	12,28	12,05	12,05	12,05	12,02	12,05	12,07	12,10	12,12	12,14	12,90
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	49,91	53,12	53,68	53,68	53,68	53,63	53,71	53,79	53,86	53,94	54,02	56,05
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	12,71	13,86	13,90	13,85	13,82	13,78	13,78	13,77	13,76	13,75	13,75	14,10
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	3,59	4,14	4,07	4,02	4,00	3,97	3,95	3,93	3,90	3,88	3,86	3,84
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	8,060	8,580	8,565	8,565	8,565	8,558	8,570	8,582	8,595	8,607	8,619	8,944
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	2,053	2,239	2,218	2,209	2,205	2,199	2,199	2,197	2,196	2,195	2,193	2,250
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,579	0,669	0,650	0,642	0,638	0,633	0,630	0,627	0,623	0,619	0,616	0,613
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	33,25	33,25	33,25	33,25	33,25	33,25	33,25	33,25	33,25	33,25	33,25	33,25
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	25,58	25,58	25,58	25,58	25,58	25,58	25,58	25,58	25,58	25,58	25,58	25,58
Расход условного топлива в самые холодные сутки, т.у.т./сут	129	129	127	127	127	127	127	127	127	127	127	127
Расход мазута в самые холодные сутки, т.н.т/сут	93	93	92	92	92	92	92	92	92	92	92	92
Нормативный неснижаемый запас мазута, т.н.т.	193	193	163	163	161	161	161	161	161	161	161	161
Нормативный эксплуатационный запас мазута, т.н.т.	190	190	177	177	175	175	175	175	175	175	175	175
5.02 м-н Загородный, 12	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	7,74	7,74	7,74	7,74	7,74	7,74	7,74	7,74	7,74	7,74	7,74	7,74
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064
Средневзвешенный срок службы, лет	17	18	19	20	21	22	23	24	25	26	27	31
Выработка тепловой энергии, тыс. Гкал	14,729	13,155	13,509	13,509	13,507	13,503	13,498	13,490	13,481	13,470	13,457	13,388
Собственные нужды тепловой энергии, тыс. Гкал	0,333	0,297	0,305	0,305	0,305	0,305	0,305	0,305	0,305	0,305	0,305	0,305
Отпуск тепловой энергии с коллекторов, тыс. Гкал	14,4	12,9	13,2	13,2	13,2	13,2	13,2	13,2	13,2	13,2	13,2	13,1

Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	14,396	12,858	13,204	13,204	13,202	13,198	13,193	13,185	13,176	13,165	13,152	13,083
Потери тепловой энергии в тепловых сетях, тыс. Гкал	3,083	1,776	1,891	1,891	1,889	1,885	1,880	1,872	1,863	1,852	1,839	1,770
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	11,313	11,082	11,313	11,313	11,313	11,313	11,313	11,313	11,313	11,313	11,313	11,313
Коэффициент использования установленной тепловой мощности, $\%$	21,7	19,4	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,9	19,8	19,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	156,4	156,4	156,3	156,3	156,3	156,3	156,3	156,3	156,3	156,3	156,3	156,3
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	2,252	2,011	2,064	2,064	2,063	2,063	2,062	2,061	2,059	2,058	2,056	2,045
Теплота сгорания природного газа, ккал/н.м³	8180	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	2,25	2,01	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,06	2,04
Расход природного газа на отпуск тепловой энергии, млн. н. м³	1,93	1,78	1,83	1,83	1,83	1,83	1,82	1,82	1,82	1,82	1,82	1,81
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	3,99	3,99	4,87	4,87	4,87	4,87	4,87	4,87	4,87	4,87	4,87	4,87
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,45	1,44	1,77	1,72	1,71	1,71	1,70	1,69	1,68	1,68	1,67	1,64
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,71	0,71	0,88	0,82	0,82	0,81	0,80	0,79	0,79	0,78	0,77	0,74
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,624	0,624	0,761	0,761	0,761	0,761	0,761	0,761	0,761	0,761	0,761	0,761
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,226	0,225	0,277	0,269	0,268	0,267	0,265	0,264	0,263	0,262	0,261	0,256
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,111	0,110	0,137	0,129	0,128	0,126	0,125	0,124	0,123	0,122	0,121	0,116
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83	2,83
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18	2,18
Расход условного топлива в самые холодные сутки, т.у.т./сут	11	11	11	11	11	11	11	11	11	11	11	11
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	7	7	7	7	7	7	7	7	7	7	7	7
Нормативный неснижаемый запас дизельного топлива, т.н.т.	42	43	31	31	31	31	31	31	31	31	31	31
Нормативный эксплуатационный запас дизельного топлива, т.н.т.	3	3	2	2	2	2	2	2	2	2	2	2
5.03 ул. Завертяева, 9/1	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14
Располагаемая тепловая мощность, Гкал/ч	0,32	0,32	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,002	0,002										

Средневзвешенный срок службы, лет	31	32										
Выработка тепловой энергии, тыс. Гкал	0,510	0,525										
Собственные нужды тепловой энергии, тыс. Гкал	0,012	0,013										
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,498	0,512										
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000										
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,498	0,512										
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000										
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,498	0,512										
Коэффициент использования установленной тепловой мощности, %	5,1	5,3										
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	165,9	165,9										
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,083	0,085										
Теплота сгорания природного газа, ккал/н.м³	8253	7910										
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	0,083	0,085										
Расход природного газа на отпуск тепловой энергии, млн. н. м³	0,070	0,075										
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,00	0,00										
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,32	0,32										
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,32	0,32										
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,000	0,000										
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,053	0,053										
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,053	0,053										
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,21	0,21										
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,16	0,16										
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,833	0,833										
5.04 ул. Березовая, За	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14
Располагаемая тепловая мощность, Гкал/ч	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Средневзвешенный срок службы, лет	44	45	46	47	48	49	50	51	52	53	54	58
Выработка тепловой энергии, тыс. Гкал	0,902	0,925	1,043	1,043	1,043	1,043	1,043	1,043	1,043	1,043	1,043	1,043
Собственные нужды тепловой энергии, тыс. Гкал	0,022	0,022	0,140	0,140	0,140	0,140	0,140	0,140	0,140	0,140	0,140	0,140

Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,880	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,880	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903	0,903
Коэффициент использования установленной тепловой мощности, %	9,0	9,3	10,4	10,4	10,4	10,4	10,4	10,4	10,4	10,4	10,4	10,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	164,9	164,9	164,9	164,9	164,9	164,9	164,9	164,9	164,9	164,9	164,9	164,9
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,145	0,149	0,149	0,149	0,149	0,149	0,149	0,149	0,149	0,149	0,149	0,149
Теплота сгорания природного газа, ккал/н.м³	8241	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Расход природного газа на отпуск тепловой энергии, млн. н. м³	0,12	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73	0,73
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120	0,120
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36
Расход условного топлива в самые холодные сутки, т.у.т./сут	1,865	1,865	1,865	1,865	1,865	1,865	1,865	1,865	1,865	1,865	1,865	1,865
5.05 ул. Красных Зорь, 54в	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14	1,14
Располагаемая тепловая мощность, Гкал/ч	0,83	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,017											
Средневзвешенный срок службы, лет	1											
Выработка тепловой энергии, тыс. Гкал	0,538											
Собственные нужды тепловой энергии, тыс. Гкал	0,090	_	_	_		_			_			
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,448											
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000											

Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,448											
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000											
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,448											
Коэффициент использования установленной тепловой мощности, %	5,4											
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	284,7											
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,128											
Теплота сгорания угля, ккал/кг	3934											
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,128											
Расход угля на отпуск тепловой энергии, тыс. т.н.т	0,227											
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,00											
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,83											
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,83											
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,000											
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,236											
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,236											
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,54											
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,42											
Расход условного топлива в самые холодные сутки, т.у.т./сут	3,686	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход угля в самые холодные сутки, т.н.т/сут	6,559	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
5.21 ул. Каховского, 3	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	39,90	39,90	39,90	39,90	39,90	39,90	39,90	39,90	39,90	39,90	39,90	39,90
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,233	0,233	0,233	0,233	0,233	0,233	0,233	0,233	0,233	0,233	0,233	0,233
Средневзвешенный срок службы, лет	30	31	32	33	34	35	36	37	38	39	40	44
Выработка тепловой энергии, тыс. Гкал	30,780	78,658	69,714	98,005	109,694	113,384	113,335	113,270	113,189	113,093	112,981	112,386
Собственные нужды тепловой энергии, тыс. Гкал	1,207	3,083	2,733	2,733	2,733	2,733	2,733	2,733	2,733	2,733	2,733	2,733
Отпуск тепловой энергии с коллекторов, тыс. Гкал	29,6	75,6	67,0	95,3	107,0	110,7	110,6	110,5	110,5	110,4	110,2	109,7
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	29,573	75,575	66,981	95,272	106,961	110,651	110,602	110,537	110,456	110,360	110,248	109,653

Потери тепловой энергии в тепловых сетях, тыс. Гкал	10,769	9,409	9,714	13,795	15,679	16,281	16,232	16,167	16,087	15,990	15,878	15,283
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	18,804	66,166	57,267	81,477	91,282	94,370	94,370	94,370	94,370	94,370	94,370	94,370
Коэффициент использования установленной тепловой мощности, %	26,3	22,5	19,9	28,0	31,4	32,4	32,4	32,4	32,4	32,4	32,3	32,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	157,9	157,9	160,2	160,2	160,2	160,2	160,2	160,2	160,2	160,2	160,2	160,2
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	4,670	11,933	10,730	15,263	17,135	17,726	17,718	17,708	17,695	17,680	17,662	17,566
Теплота сгорания природного газа, ккал/н.м³	8174	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	4,67	11,93	10,73	15,26	17,14	17,73	17,72	17,71	17,70	17,68	17,66	17,57
Расход природного газа на отпуск тепловой энергии, млн. н. м³	4,00	10,56	9,50	13,51	15,16	15,69	15,68	15,67	15,66	15,65	15,63	15,55
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	17,77	17,77	17,77	25,24	28,71	29,88	29,88	29,88	29,88	29,88	29,88	29,88
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	8,31	8,25	8,19	10,77	11,35	11,42	11,30	11,24	11,19	11,13	11,07	10,83
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	5,03	4,97	4,91	6,12	6,05	5,91	5,80	5,74	5,68	5,62	5,56	5,33
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,806	2,806	2,847	4,043	4,600	4,786	4,786	4,786	4,786	4,786	4,786	4,786
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	1,312	1,302	1,312	1,726	1,818	1,829	1,811	1,801	1,792	1,782	1,773	1,736
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,794	0,785	0,787	0,980	0,970	0,947	0,929	0,919	0,910	0,901	0,891	0,854
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	13,46	13,46	13,46	13,46	13,46	13,46	13,46	13,46	13,46	13,46	13,46	13,46
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	10,35	10,35	10,35	10,35	10,35	10,35	10,35	10,35	10,35	10,35	10,35	10,35
Расход условного топлива в самые холодные сутки, т.у.т./сут	51	51	52	52	52	52	52	52	52	52	52	52
Расход мазута в самые холодные сутки, т.н.т/сут	37	37	37	37	37	37	37	37	37	37	37	37
Нормативный неснижаемый запас мазута, т.н.т.	254	254	147	147	153	153	86	86	86	86	153	153
Нормативный эксплуатационный запас мазута, т.н.т.	99	99	98	98	102	102	57	57	57	57	102	102
5.36 ул. Завертяева, 32	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10	17,10
Располагаемая тепловая мощность, Гкал/ч	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58	0,58
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092	0,092
Средневзвешенный срок службы, лет	38	39	40	41	42	43	44	45	46	47	48	52
Выработка тепловой энергии, тыс. Гкал	11,934	45,681	61,849	61,849	61,839	61,821	61,794	61,758	61,713	61,659	61,596	61,265
Собственные нужды тепловой энергии, тыс. Гкал	0,476	1,823	2,468	2,468	2,468	2,468	2,468	2,468	2,468	2,468	2,468	2,468

Отпуск тепловой энергии с коллекторов, тыс. Гкал	11,5	43,9	59,4	59,4	59,4	59,4	59,3	59,3	59,2	59,2	59,1	58,8
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	11,458	43,858	59,381	59,381	59,371	59,353	59,326	59,290	59,245	59,191	59,128	58,797
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,316	7,591	9,109	9,109	9,099	9,081	9,054	9,018	8,973	8,919	8,856	8,525
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	11,141	36,267	50,272	50,272	50,272	50,272	50,272	50,272	50,272	50,272	50,272	50,272
Коэффициент использования установленной тепловой мощности, %	42,8	30,5	41,3	41,3	41,3	41,3	41,3	41,2	41,2	41,2	41,1	40,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,5	161,5	161,6	161,6	161,6	161,6	161,6	161,6	161,6	161,6	161,6	161,6
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	1,850	7,083	9,596	9,596	9,594	9,591	9,587	9,581	9,574	9,565	9,555	9,502
Теплота сгорания природного газа, ккал/н.м³	8112	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	1,85	7,08	9,60	9,60	9,59	9,59	9,59	9,58	9,57	9,57	9,56	9,50
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	1,60	6,27	8,49	8,49	8,49	8,49	8,48	8,48	8,47	8,46	8,46	8,41
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	15,77	15,77	15,73	15,73	15,73	15,73	15,73	15,73	15,73	15,73	15,73	15,73
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	5,97	5,96	5,93	5,91	5,89	5,88	5,86	5,84	5,82	5,80	5,79	5,71
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	3,07	3,05	3,03	3,02	3,00	2,98	2,96	2,94	2,93	2,91	2,89	2,82
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,547	2,547	2,542	2,542	2,542	2,542	2,542	2,542	2,542	2,542	2,542	2,542
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,965	0,962	0,958	0,955	0,952	0,950	0,947	0,944	0,941	0,938	0,935	0,923
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,496	0,493	0,490	0,487	0,484	0,482	0,479	0,476	0,473	0,470	0,467	0,455
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	11,22	11,22	11,22	11,22	11,22	11,22	11,22	11,22	11,22	11,22	11,22	11,22
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	8,63	8,63	8,63	8,63	8,63	8,63	8,63	8,63	8,63	8,63	8,63	8,63
Расход условного топлива в самые холодные сутки, т.у.т./сут	43	43	44	44	44	44	44	44	44	44	44	44
Расход мазута в самые холодные сутки, т.н.т/сут	31	31	31	31	31	31	31	31	31	31	31	31
Нормативный неснижаемый запас мазута, т.н.т.	100	85	85	85	85	85	103	103	103	103	85	85
5.39 п. Степной, ул. 40 лет Ракетных войск, 23	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2033
Установленная тепловая мощность, Гкал/ч	8,26	8,26	8,26	8,26	8,26	8,26	8,26	8,26	8,26	8,26	8,26	8,26
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,051	0,051	0,051	0,051	0,051	0,051	0,051	0,051	0,051	0,051	0,051	0,051
Средневзвешенный срок службы, лет	5	6	7	8	9	10	11	12	13	14	15	19

Выработка тепловой энергии, тыс. Гкал	11,679	9,837	11,180	11,766	11,763	11,758	11,749	11,738	11,724	11,707	11,688	11,584
Собственные нужды тепловой энергии, тыс. Гкал	0,264	0,222	0,253	0,253	0,253	0,253	0,253	0,253	0,253	0,253	0,253	0,253
Отпуск тепловой энергии с коллекторов, тыс. Гкал	11,4	9,6	10,9	11,5	11,5	11,5	11,5	11,5	11,5	11,5	11,4	11,3
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	11,415	9,615	10,927	11,513	11,510	11,505	11,496	11,485	11,471	11,454	11,435	11,331
Потери тепловой энергии в тепловых сетях, тыс. Гкал	3,216	1,488	2,728	2,845	2,842	2,837	2,828	2,817	2,803	2,786	2,767	2,663
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	8,199	8,127	8,199	8,668	8,668	8,668	8,668	8,668	8,668	8,668	8,668	8,668
Коэффициент использования установленной тепловой мощности, %	16,1	13,6	15,5	16,3	16,3	16,2	16,2	16,2	16,2	16,2	16,2	16,0
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	156,2	156,2	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	1,783	1,502	1,728	1,820	1,820	1,819	1,818	1,816	1,814	1,811	1,808	1,791
Теплота сгорания природного газа, ккал/н.м³	8176	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	1,78	1,50	1,73	1,82	1,82	1,82	1,82	1,82	1,81	1,81	1,81	1,79
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	1,53	1,33	1,53	1,61	1,61	1,61	1,61	1,61	1,60	1,60	1,60	1,59
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	3,09	3,09	3,16	3,29	3,29	3,29	3,29	3,29	3,29	3,29	3,29	3,29
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,29	1,29	1,30	1,35	1,33	1,32	1,32	1,31	1,30	1,29	1,29	1,26
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,72	0,72	0,72	0,74	0,72	0,72	0,71	0,70	0,69	0,69	0,68	0,65
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,482	0,482	0,499	0,520	0,520	0,520	0,520	0,520	0,520	0,520	0,520	0,520
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,202	0,201	0,206	0,213	0,211	0,209	0,208	0,207	0,206	0,205	0,203	0,199
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,113	0,112	0,114	0,117	0,115	0,113	0,112	0,111	0,110	0,109	0,107	0,103
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25	2,25
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,73	1,73	1,73	1,73	1,73	1,73	1,73	1,73	1,73	1,73	1,73	1,73
Расход условного топлива в самые холодные сутки, т.у.т./сут	8	8	9	9	9	9	9	9	9	9	9	9
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	6	6	6	6	6	6	6	6	6	6	6	6
Нормативный неснижаемый запас дизельного топлива, т.н.т.	34	34	25	25	25	25	25	25	25	25	25	25
Нормативный эксплуатационный запас дизельного топлива, т.н.т.	14	14	9	9	9	9	9	9	9	9	9	9

Ниже (Таблица 4.7) представлен общий топливный баланс по котельным МП г. Омска «Тепловая компания». Потребление природного газа к 2033 году растет с увеличением отпуска тепла за счет приростов тепловых нагрузок на газовых котельных предприятиях. Потребление угля остается неизменным.

Таблица 4.7. Перспективное потребление топлива МП г. Омска «Тепловая компания»

аблица 4.7. Перспективное потребление топлива МП г. Омска «Тепловая компания» Показатели потребления													
Показатели потребления топлива	2019	2020	2021	2022	2023	2024	2029	2033					
Установленная тепловая мощность, Гкал/ч	618,98	618,98	618,98	628,44	628,44	628,44	628,44	628,44					
Выработка тепловой энергии, тыс. Гкал	927,34	1002,83	976,61	1033,02	1048,87	1037,92	1033,33	1034,11					
Число часов использования УТМ, час	1498	1620	1578	1644	1669	1652	1644	1646					
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	889,03	961,78	936,78	993,19	1009,03	998,08	993,49	994,28					
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	157,0	160,1	162,3	161,0	160,9	160,3	160,3	160,3					
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	140	154	152	160	163	160	160	160					
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	139,44	154,01	152,05	159,91	162,37	160,01	159,26	159,38					
Расход природного газа на отпуск тепловой энергии, млн. н. м ^з	120	136	135	142	144	142	141	141					
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,405	0,240	0,271	0,270	0,269	0,268	0,263	0,258					
Расход угля на отпуск тепловой энергии, тыс. т.н.т	0,7	0,4	0,5	0,5	0,4	0,4	0,4	0,4					
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	51,92	54,11	56,81	58,67	58,39	57,67	57,66	58,03					
Максимальный часовой рас- ход условного топлива в пе- реходный период, т.у.т/ч	18,54	19,01	19,38	20,05	19,98	19,61	19,17	18,87					
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	9,00	9,07	9,24	9,52	9,31	9,07	8,63	8,27					
Удельный расход газа, кгут/Гкал	156,7	160,0	162,2	160,9	160,9	160,3	160,2	160,2					
Удельный расход угля, кгут/Гкал	243,5	228,5	230,6	230,6	230,6	230,6	230,6	230,7					

Из таблиц видно, что по рассмотренным котельным МП г. Омска «Тепловая компания» средний расход газа по годам меняется в зависимости от нагрузки потребителей, расход угля в течение всего анализируемого периода существенно не меняется в связи отсутствием планирования приростов тепла на котельных, работающих на угле. Изменение расхода условного топлива в рассматриваемый период происходит в прямой зависимости от отпуска тепла от котельных.

Изменение потребления топлива и изменение отпуска тепла на котельных более наглядно представлено на диаграмме (Рисунок 4.1).

Рисунок 4.1 Расход условного топлива и отпуск тепла от котельных МП г. Омска «Тепловая компания» по годам.

Распределение расхода угля и природного газа представлено в таблице ниже.

Таблица 4.8. Перспективное потребление натурального топлива МП г. Омска «Тепловая компания»

Показатель	2019	2020	2021	2022	2023	2024	2029	2033
Расход газа, млн.н.м ³	120	136	135	142	144	142	142	141
Расход угля, тыс.тнт	0,7	0,4	0,5	0,5	0,4	0,4	0,4	0,4

Увеличение отпуска тепла и расхода природного газа с 2019 года по 2023 год связано с подключением новых потребителей тепла.

Таблица 4.9. Расход условного топлива, используемого для производства тепловой энергии в МП г. Омска «Тепловая компания»

Расход топлива	2019	2020	2021	2022	2023	2024	2029	2033
Расход всего топлива, тыс.тут	140	154	152	160	163	160	160	160
Расход угля, тыс.тут	0,405	0,240	0,271	0,270	0,269	0,268	0,263	0,258
Расход угля, %	0,3	0,2	0,2	0,2	0,2	0,2	0,2	0,2

Доля использования угля в производстве тепловой энергии в МП г. Омска «Тепловая компания» составляет меньше 1 %.

4.3 Описание изменений в перспективных топливных балансах за период, предшествующий актуализации схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных источников тепловой энергии

Для описания изменений в перспективных топливных балансах рассмотрим изменения расхода топлива в тут по диаграмме (Рисунок 4.2).

Рисунок 4.2 Перспективные расходы условного топлива котельных МП г. Омска «Тепловая компания» действующей актуализации и актуализации 2018 года.

Расход условного топлива в действующей актуализации увеличился в 2019 году за счет принятия в эксплуатацию котельных 5.21 по ул. Каховского, 3 и 5.39 по ул. Завертяева, 32 с установленной мощностью 39,9 и 17,1 Гкал/час и подключенной нагрузкой 17.8 и 16.35 Гкал/час соответственно, дальнейшее увеличение расхода топлива до 2023 года связано с подключением новых потребителей тепловой энергии.

Уменьшается расход условного топлива в 2024 года по 2029 год за счет переключения потребителей и запланированной реконструкции:

- котла №2 в 2024 году на котельной №2.04 в п. Светлый с увеличением кпд котла и уменьшением удельного расхода на 1,8 кгут/Гкал,
- котлов №1,2, 3 в 2023 году на котельной № 2.05 по ул. Заслонова, 2 с увеличением кпд котлов и уменьшением удельного расхода на 3,6 кгут/Гкал.

5. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ КОТЕЛЬНЫХ ТЕПЛОСНАБЖАЮЩИХ ОРГАНИЗАЦИЙ

При прогнозировании отпускаемой тепловой энергии и необходимого количества топлива для котельных г. Омска рассматривались расчеты с учетом покрытия перспективных приростов и частичным переводом части нагрузок от котельных на источники АО «ТГК-11».

Всего на территории города Омска по состоянию на 01.01.2020 год работают 44 котельных 30 теплоснабжающих организаций (19 производственно-отопительных и 25 отопительных, из них три котельные с комбинированной выработкой тепла — малая генерация: 3.13 ООО «Омсктехуглерод» цех 15, 3.17 ПАО «Омскшина», 5.23 ООО «ТГКом») суммарной установленной мощностью 3269,8 Гкал/час, работающих на потребителей промышленности, жилого сектора, бюджетные и прочие организации.

- 44 котельные теплоснабжающих организаций, из них:
- 4 котельные работают на каменном угле:
 - 1.08 Филиал ОАО "РЖД" СП 3-СД по тепловодоснабжению, котельная п. ПМС ст.Входная,
 - 2.36 ФГБУ "ЦЖКУ" МО РФ в п. Черемушки, в/г 149 (кот. №48),
 - 3.20 ФГБУ "ЦЖКУ" МО РФ по ул. Пархоменко, 22, в/г 136 (кот. №51),
 - 5.16 ООО «ЮзаЭнергоТерм» по ул. 36-я Северная, 3/1;
- 4 котельные работают на мазуте:
 - 2.23 Филиал ОАО "РЖД" СП 3-СД по тепловодоснабжению, котельная ст. Омск-пассажирский по ул. Нобелевский тупик, 1,
 - 4.11 ФБУ ИК-З УФСИН России по Омской области по ул. Энтузиастов, 14,
 - 5.07 ПАО «Сатурн» на пр. К. Маркса, 41,
 - 5.44 ФГБУ "ЦЖКУ" МО РФ по ул. 40 лет Ракетных войск, в/г 489 (кот. №23),

36 котельных работают на природном газе.

С января 2020 года закрыта мазутная котельная 4.11 ФБУ ИК-З УФСИН России по Омской области по ул. Энтузиастов, 14.

С 2024 года вводится в эксплуатацию новая котельная 2.37 по ул. Архиепископа Сильвестра в связи с подключением новых потребителей жилой застройки.

5.1 Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием возобновляемых источников энергии и местных видов топлива

В большинстве на котельных теплоснабжающих организаций в качестве основного топлива используется природный горючий газ, каменный уголь используется только на четырех

котельных с небольшой установленной мощностью 0,31-2,75 Гкал/час. Мазут на четырех котельных с установленной мощностью 0,53-11,38 Гкал/час.

Дизельное топливо в качестве основного топлива на котельных не используется.

Из местных видов топлива на котельных теплоснабжающих организаций (TCO) используется мазут и в качестве резервного - дизельное топливо производства, расположенного в городе Омске ОАО «Газпромнефть-ОНПЗ». Возобновляемые источники энергии не используются из-за отсутствия опыта и разработок в отечественной энергетике.

5.2 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии

Доля использования угля в производстве тепловой энергии на ведомственных котельных за 2019 год составляет меньше 0,2 %, доля мазута – 1,5 %.

С 2020 года в связи с закрытием мазутной котельной 4.11 с установленной тепловой мощностью 11,38 Гкал/час доля использования мазута уменьшится до 1,1% и увеличится доля использования природного газа с 98,2 до 98,7 %.

На котельные (TCO) природный газ поставляется от газораспределительных станций по газопроводу с калорийностью 8073-8099 ккал/кг, в качестве топлива используется каменный уголь марки Д, мазут марки ТКМ-16, и в качестве резервного - дизельное топливо марки ДТ-35-К5 минус 32.

Ниже (Таблица 5.1) представлена структура топлива котельных теплоснабжающих организаций г. Омск.

Таблица 5.1 Структура топлива котельных теплоснабжающих организаций г. Омска

Топлив-		Э «Омск- шина»	AO «O	О «ОНИИП» ООО «Тепловая пания»		котельная 1.11 Фили- ала ОАО «РЖД»-СП пания» 3-СД по тепловодо- снабжению			ООО СМТ «Стройбетон»		лекстепло ис»	ООО «ТГКом»		
жим ко- тельной	Основ- ное топ- ливо	Резерв- ное топ- ливо	Основ- ное топ- ливо	Резерв- ное топ- ливо	Основ- ное топ- ливо	Резерв- ное топ- ливо	Основ- ное топ- ливо	Резерв- ное топ- ливо	Основное топливо	Резерв- ное топ- ливо	Основное топливо	Резерв- ное топ- ливо	Основное топливо	Резерв- ное топ- ливо
Вид	Газовое топливо	мазут	Природ- ный газ	мазут	Природ- ный газ	мазут	Природ- ный газ	мазут	Природ- ный газ	Дизель- ное топ- ливо	Природ- ный газ	Дизель- ное топ- ливо	Природ- ный газ	мазут
Марка	OK 034- 2014	TKM-16- 1,0	OK 034- 2014	TKM-16	-	TKM-16	-	TKM-16	Газ горю- чий при- родный	ДТ-3-0,2	Газ горю- чий при- родный	ДТ-3-0,2	Газ горю- чий при- родный	TKM-16
Калорий- ность	8099	9718	8600	9400	7900	9685	8100	9700	8060	10600	8060	10600	7945-8470	9523- 9673
Постав- щик топ- лива	ЗАО «Газ- пром межреги- онгаз Омск»	АО "Газ- пром- нефть» - Омский НПЗ	ЗАО «Газ- пром межреги- онгаз Омск»	АО "Газ- пром- нефть» - Омский НПЗ	ЗАО «Га- зпром межреги- онгаз Омск»	АО "Газ- пром- нефть» - Омский НПЗ	ЗАО «Га- зпром межреги- онгаз Омск»	АО "Рос- нефть»	ЗАО «Газ- пром меж- регионгаз Омск»	000 АТП-М	ЗАО «Газ- пром меж- регионгаз Омск»	ООО «Газ- пром- нефть- регио- нальные про- дажи»	ЗАО «Газ- пром меж- регионгаз Омск»	АО "Газ- пром- нефть» - Омский НПЗ
Способ доставки на ко- тельную	газопро- вод	авто- транс- порт	газопро- вод	авто- транс- порт	газопро- вод	авто- транс- порт	газопро- вод	авто- транс- порт	газопро- вод	авто- транс- порт	газопро- вод	авто- транс- порт	газопро- вод	авто- транс- порт
Откуда осу- ществля- ется по- ставка	ООО "Газпром транс- газ» Томск" ГРС-4 г.Омск	Омская нефте- база	ООО "Газпром транс- газ» Томск" ГРС-4 г.Омск	Омская нефте- база	ООО "Газпром транс- газ» Томск" ГРС-5 г.Омск	Омская нефте- база	ООО "Газ- промт- рансгаз» Томск" ГРС г.Омск	Омская нефте- база	ООО "Газ- пром трансгаз» Томск" ГРС г.Омск	Омская нефте- база	ООО "Газ- пром трансгаз» Томск" ГРС-5 г.Омск	Омская нефте- база	ООО "Газ- пром трансгаз» Томск" ГРС-3 г.Омск	Омская нефте- база
Перио- дичность поставки	круглого- дично	По заяв- кам	круглого- дично	Перед По заяв- кам	круглого- дично	По заяв- кам	круглого- дично	По заяв- кам	круглого- дично	По заяв- кам	круглого- дично	По заяв- кам	круглого- дично	По заяв- кам

Калорийность и другие показатели природного газа ООО «Газпром трансгаз Томск» предоставляет на официальном сайте в онлайн в виде паспорта качества горючего природного газа.

Качество газообразного топлива по газораспределительным станциям г. Омска, поставляемым топливо на котельные теплоснабжающих организаций представлено в таблице (Таблица 5.2).

Таблица 5.2 Качество природного газа на газораспределительных станциях г. Омска.

Показатель	ГРС-3, ГРС-4	ГРС-5
Метан, %	96	95,19
Этан, %	1,89	2,27
Пропан, %	0,5	0,66
Изо-бутан, %	0,068	0,101
Норм-бутан, %	0,071	0,103
Изо-пентан, %	0,0156	0,0221
Норм-пентан, %	0,0113	0,0158
гексан, %	0,012	0,0139
Диоксид углерода, %	0,227	0,323
азот, %	1,21	1,28
Кислород, %	0,015	0,012
водород, %	Менее 0,001	Менее 0,001
гелий, %	0,0173	0,0173
Низшая теплота сгорания, ккал/кг	8085	8128
Число Воббе, ккал/м ³	11780	11785
Плотность, кг/м ³	0,6972	0,7043

На угольных котельных № 1.08, 1.10, 2.20, 2.21 Филиала ОАО «РЖД»-СП 3-СД по тепловодоснабжению местный вид топлива не используется, каменный уголь марки ДГ, ДРГ (по классификации согласно ГОСТу 25543-2013) с калорийностью 5100 ккал/кг поставляется АО УК «Кузбассразрезуголь» с Задубровского нового разреза Кемеровской области г. Белово. Расстояние от города Белово до Омска 910 км.

Структура топлива представлена ниже (Таблица 5.3).

Таблица 5.3 Структура топлива угольных котельных Филиала ОАО «РЖД»-СП 3-СД по тепловодоснабжению

Топливный режим котельной	Основное топл	иво		
Номер котельной	1.08 ст.ПМС-22 1.10 ст. Входная 2.20 школа-интернат 2.21 пост ЭЦ ст. Московка	2.22 ТЧ «Московка» 2.23 ст. Омск пассажир- ский		
Вид	уголь каменный	мазут		
Марка	ДГ, ДРГ	TKM-16		
Калорийность	5100	9733		
Поставщик топлива	АО УК «Кузбассразрезуголь»	ПАО «Газпромнефть»		
Способ доставки на котельную	ж/д транспорт	ж/д транспорт		
Откуда осуществляется по- ставка	АО УК «Кузбассразрезуголь»	Ст. Комбинатская		
Периодичность поставки	отопительный период	отопительный период		

Калорийность и другие показатели каменного угля предоставляет АО УК «Кузбассразрезуголь» в виде удостоверений о качестве угля во время поставки топлива.

Для котельных Филиала ОАО «РЖД»-СП 3-СД по тепловодоснабжению основное топливо также является резервным.

Котельные № 2.22 и № 2.23, работающие на мазуте, являются производственными.

Ниже в таблице представлены годовые значения отпуска тепла, топливопотребления и средневзвешенные удельные расходы топлива котельных теплоснабжающих организаций по видам топлива. Калорийность топлива принята согласно предоставленным данным.

Расчеты перспективных топливных балансов выполнены:

- с учетом изменения вида топлива после реконструкции котельных 2.20 (Филиал ОАО "РЖД" СП 3-СД по тепловодоснабжению школы-интерната №20) с 2024 года, 2.22 (Филиал ОАО "РЖД" СП 3-СД по тепловодоснабжению ТЧ ст. Московка) с 2021 года, 2.23 (Филиал ОАО "РЖД" СП 3-СД по тепловодоснабжению ст. Омск Пассажирский) с 2020 года;
- с учетом закрытия котельных 3.04 ПО "Полет" филиал ФГУП "ГКНПЦ им. М.В.Хруничева", тер. "О" в 2023 году, 3.05 ПО "Полет" филиал ФГУП "ГКНПЦ им. М.В.Хруничева", тер. "Г" в 2030 году, 5.07 ПАО "Сатурн" в 2022 году,
- с учетом строительства новой котельной 2.37 по ул. Архиепископа Сильвестра. 21,
- с учетом строительства новой миниТЭЦ ООО «Тепловая компания» в 2024 году по ул.Москаленко.

Таблица 5.4. Перспективные значения потребления топлива котельными теплоснабжающих организаций

1.08 Филиал ОАО "РЖД" - СП 3-СД по тепловодоснабжению, котельная п.ПМС ст.Входная	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощность, Гкал/ч	2,75	2,75	2,75	2,75	2,75	2,75	2,75	2,75
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,396	0,396	0,396	0,396	0,396	0,396	0,396	0,396
Средневзвешенный срок службы, лет	6	7	8	9	10	11	16	20
Выработка тепловой энергии, тыс. Гкал	3,559	3,559	3,559	3,559	3,559	3,559	3,559	3,559
Собственные нужды тепловой энергии, тыс. Гкал	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064
Отпуск тепловой энергии с коллекторов, тыс. Гкал	3,5	3,5	3,5	3,5	3,5	3,5	3,5	3,5
Хозяйственные нужды тепловой энергии, тыс. Гкал	1,987	1,987	1,987	1,987	1,987	1,987	1,987	1,987
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	1,508	1,508	1,508	1,508	1,508	1,508	1,508	1,508
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	1,508	1,508	1,508	1,508	1,508	1,508	1,508	1,508

Коэффициент использования установленной тепловой мощ- ности, %	14,8	14,8	14,8	14,8	14,8	14,8	14,8	14,8
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	343,4	343,4	343,4	343,4	343,4	343,4	343,4	343,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200
Теплота сгорания природного газа, ккал/н.м³	0	0	0	0	0	0	0	0
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Теплота сгорания угля, ккал/кг	5100	5100	5100	5100	5100	5100	5100	5100
Расход угля на отпуск тепловой энергии, тыс. т.у.т	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Расход угля на отпуск тепло- вой энергии, тыс. т.н.т	1,64	1,65	1,65	1,65	1,65	1,65	1,65	1,65
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	1,42	1,42	1,42	1,42	1,42	1,42	1,42	1,42
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,486	0,486	0,486	0,486	0,486	0,486	0,486	0,486
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,107	0,107	0,107	0,107	0,107	0,107	0,107	0,107
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,018	0,018	0,018	0,018	0,018	0,018	0,018	0,018
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,92	0,92	0,92	0,92	0,92	0,92	0,92	0,92
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71
Расход условного топлива в самые холодные сутки, т.у.т./сут	7,589	7,589	7,589	7,589	7,589	7,589	7,589	7,589
Расход угля в самые холод- ные сутки, т.н.т/сут	10	10	10	10	10	10	10	10
Нормативный неснижаемый запас угля, т.н.т.	14	14	14	14	14	14	14	14
Нормативный эксплуатационный запас угля, т.н.т.	45	45	45	45	45	45	45	45
1.09 Омский РВПиС	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	5,16	5,16	5,16	5,16	5,16	5,16	5,16	5,16
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,041	0,041	0,041	0,041	0,041	0,041	0,041	0,041
Средневзвешенный срок службы, лет	4	5	6	7	8	9	14	18
Выработка тепловой энергии, тыс. Гкал	4,367	4,367	4,367	4,367	4,367	4,367	2,860	2,856
Собственные нужды тепловой энергии, тыс. Гкал Отпуск тепловой энергии с	0,086	0,086	0,086	0,086	0,086	0,086	0,086	0,086
отпуск тепловои энергии с коллекторов, тыс. Гкал Хозяйственные нужды тепло-	4,3	4,3	4,3	4,3	4,3	4,3	2,8	2,8
вой энергии, тыс. Гкал Отпуск тепловой энергии с	0,128	0,128	0,128	0,128	0,128	0,128	0,128	0,128
коллекторов внешним потре- бителям, тыс. Гкал	4,153	4,153	4,153	4,153	4,152	4,152	2,646	2,642
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,165	0,165	0,165	0,165	0,165	0,165	0	0

3,988	3,988	3,988	3,988	3,988	3,988	2,532	2,532
9,7	9,7	9,7	9,7	9,7	9,7	6,3	6,3
156,0	156,0	156,0	156,0	156,0	156,0	156,0	156,0
0,668	0,668	0,668	0,668	0,668	0,668	0,433	0,432
8000	8000	8000	8000	8000	8000	8000	8000
0,67	0,67	0,67	0,67	0,67	0,67	0,43	0,43
0,58	0,58	0,58	0,58	0,58	0,58	0,38	0,38
2,05	2,05	2,05	2,05	2,05	2,05	1,46	1,46
0,79	0,78	0,78	0,77	0,76	0,75	0,63	0,63
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,320	0,320	0,320	0,320	0,320	0,320	0,228	0,228
0,124	0,122	0,121	0,120	0,118	0,117	0,099	0,099
0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1,61	1,61	1,61	1,61	1,61	1,607	0,95	0,95
1,24	1,24	1,24	1,24	1,24	1,237	0,73	0,73
6,018	6,018	6,018	6,018	6,018	6,018	3,553	3,553
2019	2020	2021	2022	2023	2024	2029	2033
5,50	5,50	5,50	5,50	5,50	5,50	5,50	5,50
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,677	0,677	0,677	0,677	0,677	0,677	0,677	0,677
3	4	5	6	7	8	13	17
6,425	6,425	6,425	6,425	6,422	6,417	6,348	6,247
0,129	0,129	0,129	0,129	0,129	0,129	0,129	0,129
6,3	6,3	6,3	6,3	6,3	6,3	6,2	6,1
3,383	3,383	3,383	3,383	3,383	3,383	3,383	3,383
2,913	2,913	2,913	2,913	2,910	2,905	2,836	2,735
2,770	2,770	2,770	2,770	2,767	2,762	2,693	2,592
0,143	0,143	0,143	0,143	0,143	0,143	0,143	0,143
13,3	13,3	13,3	13,3	13,3	13,3	13,2	13,0
	9,7 156,0 0,668 8000 0,67 0,58 2,05 0,79 0,00 0,320 0,124 0,000 1,61 1,24 6,018 2019 5,50 0,00 0,677 3 6,425 0,129 6,3 3,383 2,913 2,770 0,143	9,7 9,7 156,0 156,0 0,668 0,668 8000 8000 0,67 0,67 0,58 0,58 2,05 2,05 0,79 0,78 0,00 0,00 0,320 0,320 0,124 0,122 0,000 0,000 1,61 1,61 1,24 1,24 6,018 6,018 2019 2020 5,50 5,50 0,00 0,00 0,677 0,677 3 4 6,425 6,425 0,129 0,129 6,3 6,3 3,383 2,913 2,770 2,770 0,143 0,143	9,7 9,7 9,7 156,0 156,0 156,0 0,668 0,668 0,668 8000 8000 8000 0,67 0,67 0,67 0,58 0,58 0,58 2,05 2,05 2,05 0,79 0,78 0,78 0,00 0,00 0,00 0,320 0,320 0,320 0,124 0,122 0,121 0,000 0,000 0,000 1,61 1,61 1,61 1,24 1,24 1,24 6,018 6,018 6,018 2019 2020 2021 5,50 5,50 5,50 0,00 0,00 0,00 0,677 0,677 0,677 3 4 5 6,425 6,425 6,425 0,129 0,129 0,129 6,3 6,3 6,3 3,383 3,383 3,383 2,913 2,913 2,913 2,770 2	9,7 9,7 9,7 9,7 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,58 0,58 0,58 0,58 2,05 2,05 2,05 2,05 0,79 0,78 0,78 0,77 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,124 0,122 0,121 0,120 0,000 0,000 0,000 0,000 1,61 1,61 1,61 1,61 1,24 1,24 1,24 1,24 6,018 6,018 6,018 6,018 2019 2020 2021 2022 5,50 5,50 5,50 5,50 0,00 0,00 0,00 0,00 0,677 0,677 0,677 0,677 <td>9,7 9,7 9,7 9,7 9,7 156,0 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 0,668 8000 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,67 0,58 0,58 0,58 0,58 0,58 2,05 2,05 2,05 2,05 2,05 0,79 0,78 0,78 0,77 0,76 0,00 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,320 0,124 0,122 0,121 0,120 0,118 0,000 0,000 0,000 0,000 0,000 1,61 1,61 1,61 1,61 1,61 1,61 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24 6,018 6,018</td> <td>9,7 9,7 9,7 9,7 9,7 156,0 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 0,668 8000 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,67 0,58 0,58 0,58 0,58 0,58 2,05 2,05 2,05 2,05 2,05 0,79 0,78 0,78 0,77 0,76 0,75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,320 0,320 0,320 0,320 0,124 0,122 0,121 0,120 0,118 0,117 0,000 0,000 0,000 0,000 0,000 1,61 1,61 1,61 1,61 1,61 1,61 1,61 1,61 1,61 1,607 1,24 1,24 1,24 1,24</td> <td>9,7 9,7 9,7 9,7 9,7 9,7 6.3 156,0 156,0 156,0 156,0 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 0,668 0,668 0,433 8000 8000 8000 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,67 0,43 0,58 0,58 0,58 0,58 0,58 0,58 0,38 2,05 2,05 2,05 2,05 2,05 2,05 1,46 0,79 0,78 0,78 0,77 0,76 0,75 0,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,320 0,228 0,124 0,122 0,121 0,120 0,118 0,117 0,099 0,000 0,000 0,000 0,000 0,000<!--</td--></td>	9,7 9,7 9,7 9,7 9,7 156,0 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 0,668 8000 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,67 0,58 0,58 0,58 0,58 0,58 2,05 2,05 2,05 2,05 2,05 0,79 0,78 0,78 0,77 0,76 0,00 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,320 0,124 0,122 0,121 0,120 0,118 0,000 0,000 0,000 0,000 0,000 1,61 1,61 1,61 1,61 1,61 1,61 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24 1,24 6,018 6,018	9,7 9,7 9,7 9,7 9,7 156,0 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 0,668 8000 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,67 0,58 0,58 0,58 0,58 0,58 2,05 2,05 2,05 2,05 2,05 0,79 0,78 0,78 0,77 0,76 0,75 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,320 0,320 0,320 0,320 0,124 0,122 0,121 0,120 0,118 0,117 0,000 0,000 0,000 0,000 0,000 1,61 1,61 1,61 1,61 1,61 1,61 1,61 1,61 1,61 1,607 1,24 1,24 1,24 1,24	9,7 9,7 9,7 9,7 9,7 9,7 6.3 156,0 156,0 156,0 156,0 156,0 156,0 156,0 156,0 0,668 0,668 0,668 0,668 0,668 0,668 0,433 8000 8000 8000 8000 8000 8000 8000 0,67 0,67 0,67 0,67 0,67 0,43 0,58 0,58 0,58 0,58 0,58 0,58 0,38 2,05 2,05 2,05 2,05 2,05 2,05 1,46 0,79 0,78 0,78 0,77 0,76 0,75 0,63 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,320 0,320 0,320 0,320 0,320 0,228 0,124 0,122 0,121 0,120 0,118 0,117 0,099 0,000 0,000 0,000 0,000 0,000 </td

Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,1	158,1	158,1	158,1	158,1	158,1	158,1	158,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,995	0,995	0,995	0,995	0,995	0,994	0,983	0,967
Теплота сгорания природного газа, ккал/н.м³	8100	8100	8100	8100	8100	8100	8100	8100
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	1,00	1,00	1,00	1,00	0,99	0,99	0,98	0,97
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,87	0,86	0,86	0,86	0,86	0,86	0,85	0,84
Теплота сгорания дизельного топлива, ккал/кг								
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т								
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т								
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	2,55	2,55	2,55	2,55	2,55	2,55	2,55	2,55
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	0,98	0,97	0,96	0,95	0,94	0,93	0,88	0,84
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,403	0,403	0,403	0,403	0,403	0,403	0,403	0,403
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,155	0,154	0,152	0,150	0,149	0,147	0,139	0,132
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	1,99	1,99	1,99	1,99	1,99	1,99	1,99	1,99
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,53	1,53	1,53	1,53	1,53	1,53	1,53	1,53
Расход условного топлива в самые холодные сутки, т.у.т./сут	8	8	8	8	8	8	8	8
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	0	0	0	0	0	0	0	0
Нормативный неснижаемый запас дизельного топлива, т.н.т.	0	0	0	0	0	0	0	0
1.17 ОАО "Омский комбинат строительных конструкций"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	66,00	66,00	66,00	66,00	66,00	66,00	66,00	66,00
Располагаемая тепловая мощ- ность, Гкал/ч	10,10	10,10	10,10	10,10	10,10	10,10	10,10	10,10
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,847	0,847	0,847	0,847	0,847	0,847	0,847	0,847
Средневзвешенный срок службы, лет	38	39	40	41	42	43	48	52
Выработка тепловой энергии, тыс. Гкал	89,533	89,533	89,533	89,533	89,529	89,520	89,417	89,265
Собственные нужды тепловой энергии, тыс. Гкал	1,756	1,756	1,756	1,756	1,756	1,756	1,756	1,756
Отпуск тепловой энергии с коллекторов, тыс. Гкал	87,8	87,8	87,8	87,8	87,8	87,8	87,7	87,5
Хозяйственные нужды тепловой энергии, тыс. Гкал	2,633	2,633	2,633	2,633	2,633	2,633	2,633	2,633
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	85,144	85,144	85,144	85,144	85,140	85,131	85,028	84,876
Потери тепловой энергии в тепловых сетях, тыс. Гкал	4,180	4,180	4,180	4,180	4,176	4,167	4,064	3,912

Полезный отпуск тепловой энергии потребителям, тыс. Гкал	80,964	80,964	80,964	80,964	80,964	80,964	80,964	80,964
Коэффициент использования установленной тепловой мощ- ности, %	15,5	15,5	15,5	15,5	15,5	15,5	15,5	15,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,2	161,2	161,2	161,2	161,2	161,2	161,2	161,2
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	14,150	14,150	14,150	14,150	14,149	14,148	14,131	14,106
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	14,15	14,15	14,15	14,15	14,15	14,15	14,13	14,11
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	12,52	12,54	12,54	12,54	12,54	12,54	12,52	12,50
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	18,36	18,36	18,36	18,36	18,36	18,36	18,36	18,36
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	17,76	17,69	17,61	17,54	17,46	17,39	17,01	16,71
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	14,41	14,34	14,26	14,19	14,11	14,04	13,66	13,36
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,959	2,959	2,959	2,959	2,959	2,959	2,959	2,959
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	2,863	2,851	2,839	2,827	2,815	2,803	2,743	2,694
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	2,323	2,311	2,299	2,287	2,275	2,263	2,203	2,154
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	20,93	20,93	20,93	20,93	20,93	20,93	20,93	20,93
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	16,10	16,10	16,10	16,10	16,10	16,10	16,10	16,10
Расход условного топлива в самые холодные сутки, т.у.т./сут	80,980	80,980	80,980	80,980	80,980	80,980	80,980	80,980
1.23 ООО "Тепловая компа- ния"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	66,50	66,50	66,50	66,50	69,50	69,50	69,50	69,50
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,509	0,509	0,509	0,509	0,509	0,509	0,509	0,509
Средневзвешенный срок службы, лет	25	26	27	28	29	30	35	39
Выработка тепловой энергии, тыс. Гкал	94,771	94,945	94,945	94,945	94,942	111,092	110,985	110,828
Собственные нужды тепловой энергии, тыс. Гкал	2,638	1,450	1,450	1,450	1,450	1,450	1,450	1,450
Отпуск тепловой энергии с коллекторов, тыс. Гкал	92,1	93,5	93,5	93,5	93,5	109,6	109,5	109,4
Хозяйственные нужды тепло-	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
вой энергии, тыс. Гкал Отпуск тепловой энергии с коллекторов внешним потре-	92,134	93,495	93,495	93,495	93,491	109,641	109,535	109,378
бителям, тыс. Гкал Потери тепловой энергии в	5,762	3,845	3,845	3,845	3,841	4,297	4,190	4,033
тепловых сетях, тыс. Гкал Полезный отпуск тепловой энергии потребителям, тыс. Гкал	86,372	89,650	89,650	89,650	89,650	105,344	105,344	105,344
Коэффициент использования установленной тепловой мощ- ности, %	16,3	16,3	16,3	16,3	15,6	18,2	18,2	18,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	143,6	155,6	155,6	155,6	155,6	155,6	155,6	155,6

Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	13,614	14,548	14,548	14,548	14,547	17,060	17,044	17,019
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	13,61	14,55	14,55	14,55	14,55	17,06	17,04	17,02
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	12,06	12,89	12,89	12,89	12,89	15,12	15,10	15,08
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	44,68	44,68	44,68	44,68	44,68	50,08	50,08	50,08
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	13,48	13,46	13,45	13,44	13,42	14,84	14,70	14,65
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	5,26	5,25	5,23	5,22	5,20	5,63	5,49	5,44
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	6,416	6,953	6,953	6,953	6,953	7,793	7,793	7,793
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	1,935	2,095	2,093	2,091	2,089	2,309	2,288	2,279
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,755	0,816	0,814	0,812	0,810	0,876	0,855	0,846
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	29,49	29,49	29,49	29,49	29,49	29,49	29,49	29,49
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	22,68	22,68	22,68	22,68	22,68	22,68	22,68	22,68
Расход условного топлива в самые холодные сутки, т.у.т./сут	101,628	110,121	110,121	110,121	110,121	110,121	110,121	110,121
1.26 ООО "Малая генерация"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	13,76	13,76	13,76	13,76	13,76			
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00			
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,419	0,419	0,419	0,419	0,419			
Средневзвешенный срок службы, лет	16	17	18	19	20			
Выработка тепловой энергии, тыс. Гкал	29,112	29,112	29,112	29,112	29,111			
Собственные нужды тепловой энергии, тыс. Гкал	1,337	1,337	1,337	1,337	1,337			
Отпуск тепловой энергии с коллекторов, тыс. Гкал	27,8	27,8	27,8	27,8	27,8			
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,833	0,833	0,833	0,833	0,833			
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	26,942	26,942	26,942	26,942	26,941			
Потери тепловой энергии в тепловых сетях, тыс. Гкал	1,224	1,224	1,224	1,224	1,223			
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	25,718	25,718	25,718	25,718	25,718			
Коэффициент использования установленной тепловой мощ- ности, %	24,2	24,2	24,2	24,2	24,2			
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	168,0	168,0	168,0	168,0	168,0			
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	4,318	4,666	4,666	4,666	4,666			
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900			
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	4,32	4,67	4,67	4,67	4,67			

3,82	4,13	4,13	4,13	4,13			
8,80	8,80	8,80	8,80	8,80			
4,30	4,29	4,28	4,27	4,26			
2,65	2,64	2,63	2,62	2,61			
1,478	1,478	1,478	1,478	1,478			
0,722	0,720	0,719	0,717	0,716			
0,445	0,443	0,442	0,440	0,439			
6,00	6,00	6,00	6,00	6,00			
4,62	4,62	4,62	4,62	4,62			
24,212	24,212	24,212	24,212	24,212			
2019	2020	2021	2022	2023	2024	2029	2033
1,16	1,16	1,16	1,16	1,16	1,16	1,16	1,16
0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
0,006	0,006	0,006	0,006	0,006	0,006	0,006	0,006
17	18	19	20	21	22	27	31
0,391	0,391	0,391	0,391	0,391	0,391	0,391	0,390
0,019	0,019	0,019	0,019	0,019	0,019	0,019	0,019
0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
0,011	0,011	0,011	0,011	0,011	0,011	0,011	0,011
0,361	0,361	0,361	0,361	0,361	0,361	0,360	0,360
0,018	0,018	0,018	0,018	0,018	0,018	0,018	0,017
0,343	0,343	0,343	0,343	0,343	0,343	0,343	0,343
3,8	3,8	3,8	3,8	3,8	3,8	3,8	3,8
164,3	164,3	164,3	164,3	164,3	164,3	164,3	164,3
0,061	0,061	0,061	0,061	0,061	0,061	0,061	0,061
8100	8100	8100	8100	8100	8100	8100	8100
0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
0,19	0,19	0,19	0,19	0,19	0,19	0,19	0,19
0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
	8,80 4,30 2,65 1,478 0,722 0,445 6,00 4,62 24,212 2019 1,16 0,00 0,006 17 0,391 0,019 0,4 0,011 0,361 0,018 0,343 3,8 164,3 3,8 164,3 0,061 8100 0,06 0,05 0,19	8,80 8,80 4,30 4,29 2,65 2,64 1,478 1,478 0,722 0,720 0,445 0,443 6,00 6,00 4,62 4,62 24,212 24,212 2019 2020 1,16 1,16 0,00 0,006 17 18 0,391 0,391 0,019 0,019 0,4 0,4 0,011 0,011 0,361 0,361 0,018 0,018 0,343 0,343 3,8 3,8 164,3 164,3 0,061 0,061 8100 8100 0,05 0,05 0,19 0,19	8,80 8,80 8,80 4,30 4,29 4,28 2,65 2,64 2,63 1,478 1,478 1,478 0,722 0,720 0,719 0,445 0,443 0,442 6,00 6,00 6,00 4,62 4,62 4,62 24,212 24,212 24,212 2019 2020 2021 1,16 1,16 1,16 0,00 0,00 0,00 0,006 0,006 0,006 17 18 19 0,391 0,391 0,391 0,019 0,019 0,019 0,04 0,4 0,4 0,011 0,011 0,011 0,361 0,361 0,361 0,343 0,343 0,343 3,8 3,8 3,8 164,3 164,3 164,3 0,061 0,061 0,061 0,05 0,05 0,05 0,19 0,19 0,19	8,80 8,80 8,80 8,80 4,30 4,29 4,28 4,27 2,65 2,64 2,63 2,62 1,478 1,478 1,478 1,478 0,722 0,720 0,719 0,717 0,445 0,443 0,442 0,440 6,00 6,00 6,00 6,00 4,62 4,62 4,62 4,62 24,212 24,212 24,212 24,212 2019 2020 2021 2022 1,16 1,16 1,16 1,16 0,00 0,00 0,00 0,00 0,006 0,006 0,006 0,006 17 18 19 20 0,391 0,391 0,391 0,391 0,019 0,019 0,019 0,019 0,4 0,4 0,4 0,4 0,011 0,011 0,011 0,011 0,018 0,018 0,018 0,018 0,343 0,343 0,343 0,343 0,6	8,80 8,80 8,80 8,80 8,80 8,80 4,30 4,29 4,28 4,27 4,26 2,65 2,64 2,63 2,62 2,61 1,478 1,478 1,478 1,478 1,478 0,722 0,720 0,719 0,717 0,716 0,445 0,443 0,442 0,440 0,439 6,00 6,00 6,00 6,00 6,00 4,62 4,62 4,62 4,62 24,212 24,212 24,212 24,212 24,212 24,212 2019 2020 2021 2022 2023 1,16 1,16 1,16 1,16 1,16 0,00 0,00 0,00 0,00 0,00 0,006 0,006 0,006 0,006 0,006 17 18 19 20 21 0,391 0,391 0,391 0,391 0,391 0,019 0,019	8,80 8,80 8,80 8,80 8,80 4,30 4,29 4,28 4,27 4,26 2,65 2,64 2,63 2,62 2,61 1,478 1,478 1,478 1,478 1,478 0,722 0,720 0,719 0,717 0,716 0,445 0,443 0,442 0,440 0,439 6,00 6,00 6,00 6,00 6,00 4,62 4,62 4,62 4,62 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 24,212 2019 2020 2021 2022 2023 2024 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 <td>8,80 8 8 8 8 8 8 8 8 8 8 8 8 8</td>	8,80 8 8 8 8 8 8 8 8 8 8 8 8 8

Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,031	0,031	0,031	0,031	0,031	0,031	0,031	0,031
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,13	0,13	0,13	0,13	0,13	0,13	0,13	0,13
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,514	0,514	0,514	0,514	0,514	0,514	0,514	0,514
1.38 ООО "ПТЭ"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	6,88	6,88	6,88	6,88	6,88	6,88	6,88	6,88
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035
Средневзвешенный срок службы, лет	6	7	8	9	10	11	16	20
Выработка тепловой энергии, тыс. Гкал	1,527	2,385	5,903	8,746	8,746	8,746	21,660	21,660
Собственные нужды тепловой энергии, тыс. Гкал	0,182	0,182	0,182	0,182	0,182	0,182	0,182	0,182
Отпуск тепловой энергии с коллекторов, тыс. Гкал	1,3	2,2	5,7	8,6	8,6	8,6	21,5	21,5
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	1,346	2,203	5,721	8,565	8,565	8,565	21,479	21,479
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	1,346	2,203	5,721	8,565	8,565	8,565	21,479	21,479
Коэффициент использования установленной тепловой мощ- ности, %	2,5	4,0	9,8	14,5	14,5	14,5	35,9	35,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	317,4	317,4	317,4	317,4	317,4	317,4	317,4	317,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	2,618	0,699	1,816	2,718	2,718	2,718	6,817	6,817
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	2,62	0,70	1,82	2,72	2,72	2,72	6,82	6,82
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	2,32	0,62	1,61	2,41	2,41	2,41	6,04	6,04
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	1,05	2,21	3,29	4,19	4,19	4,19	7,93	7,93
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	0,43	0,88	1,30	1,60	1,60	1,60	3,02	2,99
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,24	0,47	0,69	0,83	0,82	0,82	1,55	1,52
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,332	0,703	1,046	1,330	1,330	1,330	2,518	2,518
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,137	0,280	0,412	0,509	0,507	0,506	0,957	0,949

Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,075	0,149	0,218	0,262	0,261	0,260	0,491	0,482
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53
Расход условного топлива в самые холодные сутки, т.у.т./сут	5,284	5,284	5,284	5,284	5,284	5,284	5,284	5,284
1.39 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	0,96	0,96	0,96	0,96	0,96	0,96	0,96	0,96
Располагаемая тепловая мощ-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ность, Гкал/ч Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Средневзвешенный срок службы, лет	28	29	30	31	32	33	38	42
Выработка тепловой энергии, тыс. Гкал	0,197	0,197	0,197	0,197	0,197	0,197	0,197	0,197
Собственные нужды тепловой энергии, тыс. Гкал	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,006	0,006	0,006	0,006	0,006	0,006	0,006	0,006
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,182	0,182	0,182	0,182	0,182	0,182	0,182	0,182
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,008
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,173	0,173	0,173	0,173	0,173	0,173	0,173	0,173
Коэффициент использования установленной тепловой мощ- ности, %	2,3	2,3	2,3	2,3	2,3	2,3	2,3	2,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	189,4	189,4	189,4	189,4	189,4	189,4	189,4	189,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,036	0,036	0,036	0,036	0,036	0,036	0,036	0,035
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04

Расход условного топлива в самые холодные сутки, т.у.т./сут	0,211	0,211	0,211	0,211	0,211	0,211	0,211	0,211
1.40 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Средневзвешенный срок службы, лет	18	19	20	21	22	23	28	32
Выработка тепловой энергии, тыс. Гкал	0,141	0,141	0,141	0,141	0,141	0,141	0,141	0,141
Собственные нужды тепловой энергии, тыс. Гкал	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,130	0,130	0,130	0,130	0,130	0,130	0,130	0,130
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,006	0,006	0,006	0,006	0,006	0,006	0,006	0,006
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,124	0,124	0,124	0,124	0,124	0,124	0,124	0,124
Коэффициент использования установленной тепловой мощ- ности, %	4,3	4,3	4,3	4,3	4,3	4,3	4,3	4,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	189,4	189,4	189,4	189,4	189,4	189,4	189,4	189,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,025	0,025	0,025	0,025	0,025	0,025	0,025	0,025
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,009
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,151	0,151	0,151	0,151	0,151	0,151	0,151	0,151
1.41 АО "Русь"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	3,00	3,00	3,00	3,00	3,00	3,00	3,00	3,00
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,034	0,034	0,034	0,034	0,034	0,034	0,034	0,034
Средневзвешенный срок службы, лет	4	5	6	7	8	9	14	18
Выработка тепловой энергии, тыс. Гкал	2,321	2,321	2,321	2,321	2,321	2,321	2,318	2,314
Собственные нужды тепловой энергии, тыс. Гкал	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111
Отпуск тепловой энергии с коллекторов, тыс. Гкал	2,21	2,21	2,21	2,21	2,21	2,21	2,21	2,20
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,066	0,066	0,066	0,066	0,066	0,066	0,066	0,066
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	2,144	2,144	2,144	2,144	2,144	2,144	2,141	2,137
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,105	0,105	0,105	0,105	0,105	0,105	0,102	0,098
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	2,039	2,039	2,039	2,039	2,039	2,039	2,039	2,039
Коэффициент использования установленной тепловой мощ- ности, %	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	168,0	168,0	168,0	168,0	168,0	168,0	168,0	168,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,371	0,371	0,371	0,371	0,371	0,371	0,371	0,370
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,33	0,33	0,33	0,33	0,33	0,33	0,33	0,33
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,99	0,99	0,99	0,99	0,99	0,99	0,99	0,99
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,19
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,166	0,166	0,166	0,166	0,166	0,166	0,166	0,166
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,034	0,033	0,033	0,033	0,033	0,033	0,033	0,033
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
Расход условного топлива в самые холодные сутки, т.у.т./сут	2,646	2,646	2,646	2,646	2,646	2,646	2,646	2,646
2.10 АО "ОНИИП"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	128,00	128,00	128,00	128,00	128,00	128,00	128,00	128,00
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	10,609	10,609	10,609	10,609	10,609	10,609	10,609	10,609
Средневзвешенный срок службы, лет	23	24	25	26	27	28	33	37
Выработка тепловой энергии, тыс. Гкал	157,889	163,274	162,184	162,184	166,979	171,077	76,153	76,057
Собственные нужды тепловой энергии, тыс. Гкал	8,289	8,289	8,289	8,289	8,289	8,289	8,289	8,289

Отпуск тепловой энергии с коллекторов, тыс. Гкал	149,6	155,0	153,9	153,9	158,7	162,8	67,9	67,8
Хозяйственные нужды тепловой энергии, тыс. Гкал	46,708	50,881	49,864	49,864	49,864	49,864	49,864	49,864
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	102,892	104,104	104,031	104,031	108,826	112,924	18,000	17,904
Потери тепловой энергии в тепловых сетях, тыс. Гкал	20,917	20,917	21,081	21,081	21,618	22,151	2,553	2,458
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	81,975	83,187	82,950	82,950	87,208	90,773	15,447	15,447
Коэффициент использования установленной тепловой мощ- ности, %	14,1	14,6	14,5	14,5	14,9	15,3	6,8	6,8
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,3	180,5	161,1	161,1	161,1	161,1	161,1	161,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	23,679	27,969	24,799	24,799	25,571	26,232	10,936	10,920
Теплота сгорания природного газа, ккал/н.м³	8600	8600	8600	8600	8600	8600	8600	8600
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	23,68	27,97	24,80	24,80	25,57	26,23	10,94	10,92
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	20,59	22,77	20,18	20,18	20,81	21,35	8,90	8,89
Теплота сгорания мазута, ккал/кг								
Расход мазута на отпуск тепловой энергии, тыс. т.у.т								
Расход мазута на отпуск теп-								
ловой энергии, тыс. т.н.т Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	47,39	47,21	48,31	48,31	49,59	50,92	6,00	6,00
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	16,66	16,53	16,88	16,77	17,18	17,42	1,43	1,43
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	7,92	7,83	7,98	7,87	8,04	8,04	0,34	0,34
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	7,500	8,519	7,785	7,785	7,991	8,205	0,967	0,967
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	2,636	2,983	2,720	2,702	2,769	2,807	0,231	0,231
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	1,254	1,414	1,286	1,268	1,296	1,295	0,054	0,054
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	32,65	32,65	32,65	32,65	32,65	32,65	3,90	3,90
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	25,11	25,11	25,11	25,11	25,11	25,11	3,00	3,00
Расход условного топлива в самые холодные сутки, т.у.т./сут	124	141	126	126	126	126	15	15
Расход мазута в самые холод- ные сутки, т.н.т/сут	0	0	0	0	0	0	0	0
Нормативный неснижаемый запас мазута, т.н.т.	0	0	0	0	0	0	0	0
Нормативный эксплуатационный запас мазута, т.н.т.	0	0	0	0	0	0	0	0
2.11 АО "Омсктрансмаш"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	550,00	550,00	550,00	550,00	550,00	550,00	550,00	550,00
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	2,054	2,054	2,054	2,054	2,054	2,054	2,054	2,054
Средневзвешенный срок службы, лет	40	41	42	43	44	45	50	54

Выработка тепловой энергии, тыс. Гкал	197,392	197,392	206,064	226,636	226,617	226,578	226,095	225,382
Собственные нужды тепловой энергии, тыс. Гкал	4,875	4,875	4,875	4,875	4,875	4,875	4,875	4,875
Отпуск тепловой энергии с коллекторов, тыс. Гкал	192,5	192,5	201,2	221,8	221,7	221,7	221,2	220,5
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	5,776	5,776	5,776	5,776	5,776	5,776	5,776	5,776
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	186,741	186,741	195,413	215,986	215,966	215,927	215,444	214,732
Потери тепловой энергии в тепловых сетях, тыс. Гкал	18,626	18,626	18,626	19,560	19,540	19,501	19,018	18,306
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	168,115	168,115	176,787	196,426	196,426	196,426	196,426	196,426
Коэффициент использования установленной тепловой мощ- ности, %	4,1	4,1	4,3	4,7	4,7	4,7	4,7	4,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	172,0	172,0	172,0	172,0	172,0	172,0	172,0	172,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	35,304	33,113	34,604	38,143	38,140	38,133	38,050	37,927
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	35,30	33,11	34,60	38,14	38,14	38,13	38,05	37,93
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	31,24	29,34	30,66	33,80	33,79	33,79	33,72	33,61
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	77,80	77,80	77,80	81,70	81,70	81,70	81,70	81,70
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	15,93	15,90	15,86	18,29	18,06	18,02	17,84	17,70
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	3,40	3,17	3,13	2,95	2,81
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	13,382	13,382	13,382	14,052	14,052	14,052	14,052	14,052
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	2,741	2,735	2,728	3,145	3,106	3,099	3,069	3,044
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,584	0,545	0,538	0,508	0,483
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	51,73	51,73	51,73	51,73	51,73	51,73	51,73	51,73
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	39,79	39,79	39,79	39,79	39,79	39,79	39,79	39,79
Расход условного топлива в самые холодные сутки,	213,554	213,554	213,554	213,554	213,554	213,554	213,554	213,554
т.у.т./сут 2.23 Филиал ОАО "РЖД" - СП 3-СД по тепловодоснабжению, котельная ст.Омск-пассажирский	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	11,00	11,00	11,00	11,00	11,00	11,00	11,00	11,00
Располагаемая тепловая мощ- ность, Гкал/ч	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,102	0,102	0,102	0,102	0,102	0,102	0,102	0,102
Средневзвешенный срок службы, лет	29	30	31	32	33	34	39	43
Выработка тепловой энергии, тыс. Гкал	15,105	15,100	15,095	15,091	15,086	15,081	15,057	15,038
Собственные нужды тепловой энергии, тыс. Гкал	0,530	0,525	0,520	0,516	0,511	0,506	0,482	0,463
Отпуск тепловой энергии с коллекторов, тыс. Гкал	14,6	14,6	14,6	14,6	14,6	14,6	14,6	14,6

Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	14,575	14,575	14,575	14,575	14,575	14,575	14,575	14,575
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	14,575	14,575	14,575	14,575	14,575	14,575	14,575	14,575
Коэффициент использования установленной тепловой мощ- ности, %	15,7	15,7	15,7	15,7	15,7	15,7	15,6	15,6
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	193,4	193,4	155,0	155,0	155,0	155,0	155,0	155,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	2,818	2,819	2,259	2,259	2,259	2,259	2,259	2,259
Теплота сгорания природного газа, ккал/н.м³	0	0	8100	8100	8100	8100	8100	8100
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,000	0,000	2,3	2,3	2,3	2,3	2,3	2,3
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,000	0,000	2,0	2,0	2,0	2,0	2,0	2,0
Теплота сгорания мазута, ккал/кг	9733	9733						
Расход мазута на отпуск теп- ловой энергии, тыс. т.у.т	2,8	2,8						
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т	2,1	2,0						
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	5,23	5,23	5,23	5,23	5,23	5,23	5,23	5,23
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,41	1,41	1,41	1,41	1,41	1,41	1,41	1,41
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,45	0,45	0,45	0,45	0,45	0,45	0,45	0,45
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	1,012	1,012	0,811	0,811	0,811	0,811	0,811	0,811
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,272	0,272	0,218	0,218	0,218	0,218	0,218	0,218
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,087	0,087	0,069	0,069	0,069	0,069	0,069	0,069
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	3,43	3,43	3,43	3,43	3,43	3,43	3,43	3,43
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	2,64	2,64	2,64	2,64	2,64	2,64	2,64	2,64
Расход условного топлива в самые холодные сутки, т.у.т./сут	16	16	13	13	13	13	13	13
Расход мазута в самые холод- ные сутки, т.н.т/сут	11	11	0	0	0	0	0	0
Нормативный неснижаемый запас мазута, т.н.т.	10	10	0	0	0	0	0	0
Нормативный эксплуатацион- ный запас мазута, т.н.т.	32	32	0	0	0	0	0	0
2.28 АСУСО "Омский психоневрологический интернат"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	2,58	2,58	2,58	2,58	2,58	2,58	2,58	2,58
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,064	0,064	0,064	0,064	0,064	0,064	0,064	0,064
Средневзвешенный срок службы, лет	14	15	16	17	18	19	24	28
Выработка тепловой энергии, тыс. Гкал	6,732	6,732	6,732	6,732	6,732	6,731	6,723	6,712

Собственные нужды тепловой энергии, тыс. Гкал	0,132	0,132	0,132	0,132	0,132	0,132	0,132	0,132
Отпуск тепловой энергии с коллекторов, тыс. Гкал	6,60	6,60	6,60	6,60	6,60	6,60	6,59	6,58
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,198	0,198	0,198	0,198	0,198	0,198	0,198	0,198
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	6,402	6,402	6,402	6,402	6,402	6,401	6,393	6,382
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,314	0,314	0,314	0,314	0,314	0,313	0,305	0,294
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	6,088	6,088	6,088	6,088	6,088	6,088	6,088	6,088
Коэффициент использования установленной тепловой мощ- ности, %	29,8	29,8	29,8	29,8	29,8	29,8	29,7	29,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	150,7	150,7	150,7	150,7	150,7	150,7	150,7	150,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,995	0,995	0,995	0,995	0,995	0,994	0,993	0,992
Теплота сгорания природного газа, ккал/н.м³	8050	8050	8050	8050	8050	8050	8050	8050
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	2,44	2,44	2,44	2,44	2,44	2,44	2,44	2,44
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,75	0,75	0,75	0,74	0,74	0,74	0,73	0,72
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,30	0,30	0,30	0,30	0,29	0,29	0,28	0,27
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,368	0,368	0,368	0,368	0,368	0,368	0,368	0,368
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,113	0,113	0,113	0,112	0,112	0,112	0,110	0,109
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,046	0,045	0,045	0,045	0,044	0,044	0,043	0,041
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,27	1,27	1,27	1,27	1,27	1,27	1,27	1,27
Расход условного топлива в самые холодные сутки, т.у.т./сут	5,970	5,970	5,970	5,970	5,970	5,970	5,970	5,970
2.29 БСУСО "Кировский дом- интернат для умственно-от- сталых детей"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощность, Гкал/ч	1,89	1,89	1,89	1,89	1,89	1,89	1,89	1,89
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,027	0,027	0,027	0,027	0,027	0,027	0,027	0,027
Средневзвешенный срок службы, лет	13	14	15	16	17	18	23	27
Выработка тепловой энергии, тыс. Гкал	2,814	2,814	2,814	2,814	2,814	2,814	2,810	2,806
Собственные нужды тепловой энергии, тыс. Гкал	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055
Отпуск тепловой энергии с коллекторов, тыс. Гкал	2,8	2,8	2,8	2,8	2,8	2,8	2,8	2,8
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,083	0,083	0,083	0,083	0,083	0,083	0,083	0,083

Отпуск тепловой энергии с								
коллекторов внешним потре- бителям, тыс. Гкал	2,676	2,676	2,676	2,676	2,676	2,676	2,673	2,668
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,131	0,131	0,131	0,131	0,131	0,131	0,127	0,123
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	2,545	2,545	2,545	2,545	2,545	2,545	2,545	2,545
Коэффициент использования установленной тепловой мощ- ности, %	17,0	17,0	17,0	17,0	17,0	17,0	17,0	16,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	159,0	159,0	159,0	159,0	159,0	159,0	159,0	159,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,439	0,439	0,439	0,439	0,439	0,439	0,438	0,437
Теплота сгорания природного газа, ккал/н.м³	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,44	0,44	0,44	0,44	0,44	0,44	0,44	0,44
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	0,39	0,39	0,39	0,39	0,39	0,39	0,39	0,39
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,97	0,97	0,97	0,97	0,97	0,97	0,97	0,97
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,27	0,27	0,27	0,27	0,27	0,27	0,26	0,26
Тепловая нагрузка на коллек- торах в летний период, Гкал/ч	0,09	0,09	0,09	0,09	0,09	0,09	0,08	0,08
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,155	0,155	0,155	0,155	0,155	0,155	0,155	0,155
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,043	0,043	0,043	0,042	0,042	0,042	0,041	0,041
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,015	0,014	0,014	0,014	0,014	0,014	0,013	0,012
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	0,66	0,66	0,66	0,66	0,66	0,66	0,66	0,66
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
Расход условного топлива в самые холодные сутки, т.у.т./сут	2,537	2,537	2,537	2,537	2,537	2,537	2,537	2,537
2.33 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	7,71	7,71	7,71	7,71	7,71	7,71	7,71	7,71
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,114	0,114	0,114	0,114	0,114	0,114	0,114	0,114
Средневзвешенный срок службы, лет	17	18	19	20	21	22	27	31
Выработка тепловой энергии, тыс. Гкал	12,035	12,035	12,035	12,035	12,034	12,033	12,019	11,999
Собственные нужды тепловой энергии, тыс. Гкал	0,236	0,236	0,236	0,236	0,236	0,236	0,236	0,236
Отпуск тепловой энергии с коллекторов, тыс. Гкал	11,8	11,8	11,8	11,8	11,8	11,8	11,8	11,8
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,354	0,354	0,354	0,354	0,354	0,354	0,354	0,354
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	11,445	11,445	11,445	11,445	11,444	11,443	11,429	11,409
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,562	0,562	0,562	0,562	0,561	0,560	0,546	0,526
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	10,883	10,883	10,883	10,883	10,883	10,883	10,883	10,883

Коэффициент использования установленной тепловой мощ- ности, %	17,8	17,8	17,8	17,8	17,8	17,8	17,8	17,8
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	172,2	172,2	172,2	172,2	172,2	172,2	172,2	172,2
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	2,032	2,032	2,032	2,032	2,032	2,031	2,029	2,026
Теплота сгорания природного газа, ккал/н.м³	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	2,03	2,03	2,03	2,03	2,03	2,03	2,03	2,03
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	1,80	1,80	1,80	1,80	1,80	1,80	1,80	1,79
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	4,50	4,50	4,50	4,50	4,50	4,50	4,50	4,50
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,11	1,11	1,10	1,10	1,09	1,09	1,07	1,05
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,29	0,29	0,28	0,28	0,27	0,27	0,25	0,23
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,775	0,775	0,775	0,775	0,775	0,775	0,775	0,775
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,191	0,190	0,190	0,189	0,188	0,187	0,184	0,180
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,050	0,049	0,049	0,048	0,047	0,046	0,042	0,039
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	3,07	3,07	3,07	3,07	3,07	3,07	3,07	3,07
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	2,36	2,36	2,36	2,36	2,36	2,36	2,36	2,36
Расход условного топлива в самые холодные сутки, т.у.т./сут	12,693	12,693	12,693	12,693	12,693	12,693	12,693	12,693
2.34 ООО "КомплексТепло- Сервис"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	21,50	21,50	21,50	21,50	21,50	21,50	21,50	21,50
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,200	0,200	0,200	0,200	0,200	0,200	0,200	0,200
Средневзвешенный срок службы, лет	13	14	15	16	17	18	23	27
Выработка тепловой энергии, тыс. Гкал	46,698	44,930	46,179	46,179	46,173	46,160	46,007	45,781
Собственные нужды тепловой энергии, тыс. Гкал	1,036	1,036	1,036	1,036	1,036	1,036	1,036	1,036
Отпуск тепловой энергии с коллекторов, тыс. Гкал	45,7	43,9	45,1	45,1	45,1	45,1	45,0	44,7
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	45,662	43,894	45,143	45,143	45,137	45,124	44,971	44,745
Потери тепловой энергии в тепловых сетях, тыс. Гкал	5,917	5,734	6,209	6,209	6,203	6,190	6,037	5,811
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	39,745	38,160	38,934	38,934	38,934	38,934	38,934	38,934
Коэффициент использования установленной тепловой мощ- ности, %	24,8	23,9	24,5	24,5	24,5	24,5	24,4	24,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	157,0	157,0	157,0	157,0	157,0	157,0	157,0	157,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	7,167	6,890	7,086	7,086	7,085	7,083	7,059	7,023

Теплота сгорания природного газа, ккал/н.м³	8149	8149	8149	8149	8149	8149	8149	8149
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	7,17	6,89	7,09	7,09	7,08	7,08	7,06	7,02
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	6,16	5,92	6,09	6,09	6,09	6,08	6,06	6,03
Теплота сгорания дизельного топлива, ккал/кг								
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т								
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т								
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	14,87	14,87	14,87	14,87	14,87	14,87	14,87	14,87
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	4,51	4,50	4,49	4,48	4,47	4,46	4,41	4,37
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	1,78	1,77	1,76	1,75	1,74	1,73	1,68	1,64
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	2,334	2,334	2,334	2,334	2,334	2,334	2,334	2,334
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,708	0,706	0,705	0,703	0,702	0,700	0,692	0,686
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,279	0,277	0,276	0,274	0,273	0,271	0,263	0,257
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	9,98	9,98	9,98	9,98	9,98	9,98	9,98	9,98
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	7,68	7,68	7,68	7,68	7,68	7,68	7,68	7,68
Расход условного топлива в самые холодные сутки, т.у.т./сут	38	38	38	38	38	38	38	38
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	0	0	0	0	0	0	0	0
Нормативный неснижаемый запас дизельного топлива, т.н.т.	0	0	0	0	0	0	0	0
Нормативный эксплуатацион- ный запас дизельного топ- лива, т.н.т.	0	0	0	0	0	0	0	0
2.36 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средневзвешенный срок службы, лет	13	14	15	16	17	18	23	27
Выработка тепловой энергии, тыс. Гкал	0,047	0,047	0,047	0,047	0,047	0,047	0,047	0,047
Собственные нужды тепловой энергии, тыс. Гкал	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0,045
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,045	0,045	0,045	0,045	0,045	0,045	0,045	0,045

Коэффициент использования установленной тепловой мощ- ности, %	1,7	1,7	1,7	1,7	1,7	1,7	1,7	1,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	159,0	159,0	159,0	159,0	159,0	159,0	159,0	159,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,007
Теплота сгорания угля, ккал/кг	5100	5100	5100	5100	5100	5100	5100	5100
Расход угля на отпуск тепло- вой энергии, тыс. т.у.т	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Расход угля на отпуск тепло- вой энергии, тыс. т.н.т	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,052	0,052	0,052	0,052	0,052	0,052	0,052	0,052
Расход угля в самые холод- ные сутки, т.н.т/сут	0,071	0,071	0,071	0,071	0,071	0,071	0,071	0,071
Нормативный неснижаемый запас угля, т.н.т.	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
Нормативный эксплуатационный запас угля, т.н.т.	1,65	1,65	1,65	1,65	1,65	1,65	1,65	1,65
2.37 Новая котельная	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ-						8,00	8,00	8,00
ность, Гкал/ч Располагаемая тепловая мощ-						0,00	0,00	0,00
ность, Гкал/ч Среднегодовые собственные и						0,000	0,000	0,000
хозяйственные нужды, Гкал/ч Средневзвешенный срок						1	6	10
службы, лет Выработка тепловой энергии,						16,449	22,819	28,141
тыс. Гкал Собственные нужды тепловой							•	,
энергии, тыс. Гкал Отпуск тепловой энергии с						2,0	2,0	2,0
коллекторов, тыс. Гкал						14,4	20,8	26,1
Хозяйственные нужды тепловой энергии, тыс. Гкал						0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал						14,449	20,819	26,141
Потери тепловой энергии в тепловых сетях, тыс. Гкал						0,688	0,931	1,176
Полезный отпуск тепловой энергии потребителям, тыс. Гкал						13,761	19,888	24,965
Коэффициент использования установленной тепловой мощ- ности, %						23,5	32,6	40,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал						156,0	156,0	156,0

Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т				2,254	3,248	4,078
Теплота сгорания природного газа, ккал/н.м³				8000	8000	8000
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т				2,25	3,25	4,08
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³				1,97	2,84	3,57
Теплота сгорания угля, ккал/кг						
Расход угля на отпуск тепло- вой энергии, тыс. т.у.т						
Расход угля на отпуск тепло- вой энергии, тыс. т.н.т						
Теплота сгорания мазута, ккал/кг						
Расход мазута на отпуск теп- ловой энергии, тыс. т.у.т						
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т						
Теплота сгорания дизельного топлива, ккал/кг						
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т						
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т						
Теплота сгорания прочего топлива, ккал/кг						
Расход прочего топлива на отпуск тепловой энергии, тыс. т.у.т						
Расход прочего топлива на от- пуск тепловой энергии, тыс. т.н.т						
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч				4,08	5,65	7,43
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч				1,53	2,17	2,58
Тепловая нагрузка на коллекторах в летний период, Гкал/ч				0,77	1,13	1,20
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч				0,636	0,882	1,158
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч				0,238	0,339	0,402
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч				0,120	0,176	0,187
Средняя тепловая нагрузка на коллекторах в самый холод-				0,00	0,00	0,00
ный месяц, Гкал/ч Средняя тепловая нагрузка на коллекторах за три холодных				0,00	0,00	0,00
месяца, Гкал/ч Расход условного топлива в самые холодные сутки,				0,000	0,000	0,000
т.у.т./сут Расход угля в самые холод-				0,000	0,000	0,000
ные сутки, т.н.т/сут Расход мазута в самые холод-				0,000	0,000	0,000
ные сутки, т.н.т/сут Расход дизельного топлива в самые холодные сутки,				0,000	0,000	0,000
т.н.т/сут Нормативный неснижаемый				0,00	0,00	0,00
запас угля, т.н.т. Нормативный неснижаемый				0,00	0,00	0,00
запас мазута, т.н.т.	<u></u>	j	j	3,00	3,00	3,00

		ı		1		1	ı	·
Нормативный неснижаемый запас дизельного топлива, т.н.т.						0,00	0,00	0,00
Нормативный эксплуатацион- ный запас угля, т.н.т.								
Нормативный эксплуатационный запас мазута, т.н.т.								
Нормативный эксплуатационный запас дизельного топ-								
лива, т.н.т. 3.04 ПО "Полет" филиал ФГУП "ГКНПЦ им. М.В.Хруничева", котельная тер."О"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	301,20	301,20	301,20	301,20				
Располагаемая тепловая мощ- ность, Гкал/ч	16,79	16,79	16,79	16,79				
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	3,153	3,153	3,153	3,153				
Средневзвешенный срок службы, лет	39	40	41	42				
Выработка тепловой энергии, тыс. Гкал	249,843	249,797	251,748	251,410				
Собственные нужды тепловой энергии, тыс. Гкал	16,345	16,007	15,670	15,332				
Отпуск тепловой энергии с коллекторов, тыс. Гкал	233,5	233,8	236,1	236,1				
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000				
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	233,498	233,789	236,078	236,078				
Потери тепловой энергии в тепловых сетях, тыс. Гкал	23,552	23,573	23,699	23,699				
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	209,946	210,216	212,379	212,379				
Коэффициент использования установленной тепловой мощ- ности, %	9,5	9,5	9,5	9,5				
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	165,3	165,3	165,3	165,3				
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	38,597	38,645	39,024	39,024				
Теплота сгорания природного газа, ккал/н.м³	8254	8254	8254	8254				
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	38,60	38,65	39,02	39,02				
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	32,73	32,77	33,09	33,09				
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	117,72	117,82	118,45	118,45				
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	51,02	50,96	51,10	50,98				
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	29,43	29,35	29,38	29,26				
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	19,459	19,476	19,580	19,580				
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	8,434	8,423	8,447	8,427				
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	4,865	4,851	4,856	4,836				
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	90,34	90,34	90,34	90,34				
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	69,49	69,49	69,49	69,49				

Расход условного топлива в самые холодные сутки, т.у.т./сут	358,39	358,39	358,39	358,39				
3.05 ПО "Полет" филиал ФГУП "ГКНПЦ им. М.В.Хруничева", котельная тер."Г"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	138,40	138,40	138,40	138,40	138,40	138,40	138,40	
Располагаемая тепловая мощ-	16,79	16,79	16,79	16,79	16,79	16,79	16,79	
ность, Гкал/ч Среднегодовые собственные и	1,061	1,061	1,061	1,061	1,061	1,061	1,061	
хозяйственные нужды, Гкал/ч Средневзвешенный срок		·			·		·	
службы, лет Выработка тепловой энергии,	50	51	52	53	54	55	60	
тыс. Гкал	84,108	84,952	84,750	88,538	89,636	89,410	88,282	
Собственные нужды тепловой энергии, тыс. Гкал	5,501	5,299	5,097	4,894	4,692	4,490	3,479	
Отпуск тепловой энергии с коллекторов, тыс. Гкал	78,6	79,7	79,7	83,6	84,9	84,9	84,8	
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	78,607	79,653	79,653	83,643	84,943	84,920	84,803	
Потери тепловой энергии в тепловых сетях, тыс. Гкал	11,371	11,435	11,435	11,727	11,796	11,772	11,655	
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	67,236	68,218	68,218	71,916	73,148	73,148	73,148	
Коэффициент использования установленной тепловой мощ- ности, %	6,9	7,0	7,0	7,3	7,4	7,4	7,3	
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	161,0	161,0	161,0	161,0	161,0	161,0	161,0	
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	12,652	12,824	12,824	13,467	13,676	13,672	13,653	
Теплота сгорания природного газа, ккал/н.м³	8254	8254	8254	8254	8254	8254	8254	
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	12,652	12,824	12,824	13,467	13,676	13,672	13,653	
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	10,730	10,876	10,876	11,421	11,598	11,595	11,579	
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	50,43	50,71	50,71	52,00	52,36	52,36	52,36	
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	32,06	32,11	32,03	32,35	32,36	32,27	31,96	
Тепловая нагрузка на коллек- торах в летний период, Гкал/ч	22,83	22,82	22,74	22,82	22,77	22,68	22,37	
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	8,119	8,165	8,165	8,373	8,430	8,430	8,430	
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	5,162	5,169	5,157	5,208	5,209	5,196	5,145	
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	3,675	3,674	3,661	3,674	3,665	3,652	3,601	
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	45,75	45,75	45,75	45,75	45,75	45,75	45,75	
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	35,20	35,20	35,20	35,20	35,20	35,20	35,20	
Расход условного топлива в самые холодные сутки, т.у.т./сут	176,795	176,795	176,795	176,795	176,795	176,795	176,795	
3.08 ОАО "Сибирские приборы и системы"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	11,61	11,61	11,61	11,61	11,61	11,61	11,61	11,61

НОСТЬ, 1, Кайич О,187 О	Располагаемая тепловая мощ-					1			1
Среднегодовые собственные и жозяйственные и жозяйственные нужды. Гкага\(1 + 1 \) (2		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Средневавешенный грок	Среднегодовые собственные и	0,187	0,187	0,187	0,187	0,187	0,187	0,187	0,187
Выработка rennesió энергии, тыс. Гкал 20,360 20,370 0,90	Средневзвешенный срок	11	12	13	14	15	16	21	25
Собственные нужды тепловой орого 0,970 0,	Выработка тепловой энергии,	20,360	20,360	20,360	20,360	20,360	20,360	20,360	20,360
энергии, Тыс. Гкал	Собственные нужды тепловой		0.970	0.970	0.970	0.970		0.970	0,970
Козяйственные нужды тепловой энергии с коллекторов внешными потребителям, тыс. Гкал Полезный оттуск тепловой энергии в тепловой оттуск тепловой энергии потребителям, тыс. Гкал Полезный оттуск тепловой от теплово	энергии, тыс. Гкал Этпуск тепловой энергии с				·				19,391
вой энергии, тыс. Гкап 0,000 0,00				·	•			· ·	·
коллекторов внешним потре- бителям, тыс. Гкал 19,391	вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловых сетях, тыс. Гкал 0,000	коллекторов внешним потре- бителям, тыс. Гкал	19,391	19,391	19,391	19,391	19,391	19,391	19,391	19,391
3 3 3 3 3 3 3 3 3 3	·	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
установленной тепловой мощности, % Удельный расход условного топлива на отпуск тепловой знергии, кг.ут./Гкал Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т Теплота сгорания природного газа, ккал/н.м³ Расход природного газа на отпуск тепловой энергии, тыс. 3,228 3,232 3,	энергии потребителям, тыс.	19,391	19,391	19,391	19,391	19,391	19,391	19,391	19,391
Удельный расход условного топлива на отпуск тепловой знергии, кгу т./Гкал 166,7 <th< td=""><td>установленной тепловой мощ-</td><td>20,0</td><td>20,0</td><td>20,0</td><td>20,0</td><td>20,0</td><td>20,0</td><td>20,0</td><td>20,0</td></th<>	установленной тепловой мощ-	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Расход условного топлива на отпуск тепловой энергии, тыс. 1,у.т Теплота сгорания природного газа, ккал/н.м³ 8000 8000 8000 8000 8000 8000 8000 80	Удельный расход условного гоплива на отпуск тепловой	166,7	166,7	166,7	166,7	166,7	166,7	166,7	166,7
Теплота сгорания природного газа, ккап/н. м³ Расход природного газа на отпуск тепловой энергии, тыс. т.у.т Расход природного газа на отпуск тепловой энергии, тыс. т.у.т Расход природного газа на отпуск тепловой энергии, млн. н. д.я д.я д.я д.я д.я д.я д.я д.я д.я д.	Расход условного топлива на отпуск тепловой энергии, тыс.	3,228	3,232	3,232	3,232	3,232	3,232	3,232	3,232
Расход природного газа на от- пуск тепловой энергии, тыс. Т.у.т Расход природного газа на от- пуск тепловой энергии, млн. н. м³ Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч Тепловая нагрузка на коллек- торах в лереходный период, Гкал/ч Тепловая нагрузка на коллек- торах в лереходный период, Гкал/ч Тепловая нагрузка на коллек- торах в лереходный период, Гкал/ч Тепловая нагрузка на коллек- торах в летний период, Гкал/ч Максимальный часовой рас- ход условного топлива в ОЗП, Т.у.т/ч Максимальный часовой рас- ход условного топлива в пере- ход условного топлива в лет- О,000 О,0	Геплота сгорания природного	8000	8000	8000	8000	8000	8000	8000	8000
Расход природного газа на отпуск тепловой энергии, млн. н. 2,825 2,828	Расход природного газа на от- пуск тепловой энергии, тыс.	3,228	3,232	3,232	3,232	3,232	3,232	3,232	3,232
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч Тепловая нагрузка на коллекторах в переходный период, Гкал/ч Тепловая нагрузка на коллекторах в переходный период, Гкал/ч Тепловая нагрузка на коллекторах в летний период, Гкал/ч О,00 О,00 О,00 О,00 О,00 О,00 О,00 О,00	Расход природного газа на от- пуск тепловой энергии, млн. н.	2,825	2,828	2,828	2,828	2,828	2,828	2,828	2,828
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч Тепловая нагрузка на коллекторах в летний период, Гкал/ч Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч Максимальный часовой расход условного топлива в переход условного топлива в лет-	Гепловая нагрузка на коллек- горах в осенне-зимний пе-	10,70	10,70	10,70	10,70	10,70	10,70	10,70	10,70
Тепловая нагрузка на коллекторах в летний период, Гкал/ч Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч Максимальный часовой расход условного топлива в переход условного топлива в переход условного топлива в переход условного топлива в переходный период, т.у.т/ч Максимальный часовой расход условного топлива в переходный период, т.у.т/ч Максимальный часовой расход условного топлива в лет- О,000 О	Гепловая нагрузка на коллек- горах в переходный период,	1,95	1,95	1,95	1,95	1,95	1,95	1,95	1,95
Максимальный часовой рас- ход условного топлива в ОЗП, 1,784 1,784 1,784 1,784 1,784 1,784 1,784 1,784 1,784 1 т.у.т/ч 1,784	Гепловая нагрузка на коллек-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч Максимальный часовой рас- ход условного топлива в лет- 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Максимальный часовой рас- код условного топлива в ОЗП,	1,784	1,784	1,784	1,784	1,784	1,784	1,784	1,784
Максимальный часовой рас- ход условного топлива в лет- 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0	Максимальный часовой рас- код условного топлива в пере-	0,324	0,324	0,324	0,324	0,324	0,324	0,324	0,324
Time to price at the second se	Максимальный часовой рас- код условного топлива в лет-	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на	Средняя тепловая нагрузка на коллекторах в самый холод-	6,96	6,96	6,96	6,96	6,96	6,96	6,96	6,96
Средняя тепловая нагрузка на	Средняя тепловая нагрузка на коллекторах за три холодных	5,35	5,35	5,35	5,35	5,35	5,35	5,35	5,35
Расход условного топлива в	Расход условного топлива в самые холодные сутки,	27,826	27,826	27,826	27,826	27,826	27,826	27,826	27,826
3.13 OOO «Омсктехуглерод» (Цех №15) 2019 2020 2021 2022 2023 2024 2029 2	3.13 ООО «Омсктехуглерод» (Цех №15)	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч 231,00 231,00 231,00 231,00 231,00 231,00 231,00 231,00 231,00		231,00	231,00	231,00	231,00	231,00	231,00	231,00	231,00
Располагаемая тепловая мош-	Располагаемая тепловая мощ-	80,96	80,96	80,96	80,96	80,96	80,96	80,96	80,96
Charlustonophia concernation in	Среднегодовые собственные и	3,522	3,522	3,522	3,522	3,522	3,522	3,522	3,522
Средневзвешенный срок 28 29 30 31 32 33 38 службы, лет	Средневзвешенный срок	28	29	30	31	32	33	38	42
Выработуа тепповой энергии	Выработка тепловой энергии,	787	787	788	789	789	789	789	788

Собственные нужды тепловой							l	
энергии, тыс. Гкал	18	18,256	18,256	18,256	18,256	18,256	18,256	18,256
Отпуск тепловой энергии с коллекторов, тыс. Гкал	769	769	770	771	771	771	770	770
Хозяйственные нужды тепловой энергии, тыс. Гкал	0	0	0	0	0	0	0	0
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	769	769	770	771	771	771	770	770
Потери тепловой энергии в тепловых сетях, тыс. Гкал	15	15	15	15	15	15	14	14
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	754,114	754,146	755,227	755,988	755,988	755,988	755,988	755,988
Коэффициент использования установленной тепловой мощ- ности, %	38,9	38,9	38,9	39,0	39,0	39,0	39,0	38,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	165,8	165,8	165,8	165,8	165,8	165,8	165,8	165,8
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	37	37	37	37	37	37	37	37
Теплота сгорания природного газа, ккал/н.м³	8173	8173	8173	8173	8173	8173	8173	8173
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	128	127	128	128	128	128	128	128
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	109	109	109	110	110	110	110	109
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	35,82	35,83	36,17	36,43	36,43	36,43	36,43	36,43
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	93,84	93,81	93,89	93,92	93,87	93,83	93,65	93,51
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	87,23	87,19	87,21	87,19	87,14	87,10	86,93	86,78
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	5,939	5,941	5,996	6,040	6,040	6,040	6,040	6,040
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	15,559	15,553	15,567	15,571	15,563	15,557	15,528	15,504
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	14,462	14,456	14,460	14,456	14,448	14,442	14,412	14,389
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	77,07	77,07	77,07	77,07	77,07	77,07	77,07	77,07
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	59,29	59,29	59,29	59,29	59,29	59,29	59,29	59,29
Расход условного топлива в самые холодные сутки, т.у.т./сут	307	307	307	307	307	307	307	307
Выработка электрической энергии, тыс. кВтч	136580	136580	136580	136580	136580	136580	136580	136580
Удельный расход условного топлива на выработку электрической энергии, гр/кВтч	643	643	643	643	643	643	643	643
Расход условного топлива на выработку электрической энергии, тыс. т.у.т	73149	73149	73149	73149	73149	73149	73149	73149
Расход газа от производства, тыс т.у.т	90,591	90,591	90,591	90,591	90,591	90,591	90,591	90,591
3.14 ООО «Омсктехуглерод» (ТФК)	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	250,00	250,00	250,00	250,00	250,00	250,00	250,00	250,00
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	1,362	1,362	1,362	1,362	1,362	1,362	1,362	1,362
Средневзвешенный срок службы, лет	44	45	46	47	48	49	54	58

Выработка тепловой энергии, тыс. Гкал	253,742	253,742	254,744	215,881	218,947	218,947	227,823	227,823
Собственные нужды тепловой энергии, тыс. Гкал	7,061	7,061	7,061	7,061	7,061	7,061	7,061	7,061
Отпуск тепловой энергии с коллекторов, тыс. Гкал	246,681	246,681	247,683	208,820	211,886	211,886	220,762	220,762
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	246,681	246,681	247,683	208,820	211,886	211,886	220,762	220,762
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	246,681	246,681	285,488	285,488	288,965	288,965	299,069	299,069
Коэффициент использования установленной тепловой мощ- ности, %	11,6	11,6	11,6	9,9	10,0	10,0	10,4	10,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	160,0	160,0	160,0	160,0	160,0	160,0	160,0	160,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	40,572	39,469	39,629	33,411	33,902	33,902	35,322	35,322
Теплота сгорания природного газа, ккал/н.м³	8173	8173	8173	8173	8173	8173	8173	8173
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	40,572	39,469	39,629	33,411	33,902	33,902	35,322	35,322
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	34,749	33,804	33,942	28,616	29,036	29,036	30,252	30,252
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	120,82	120,82	120,46	120,46	121,35	121,35	123,89	123,89
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	41,32	41,20	43,95	43,83	44,08	43,91	44,30	43,79
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	19,05	18,93	18,80	18,67	18,73	18,57	18,39	17,88
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	19,332	19,332	20,359	20,359	20,508	20,508	20,935	20,935
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	6,611	6,592	6,627	6,627	6,682	6,682	6,842	6,842
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	3,049	3,029	3,055	3,055	3,083	3,083	3,168	3,168
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	82,46	82,46	82,46	82,46	82,46	82,46	82,46	82,46
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	63,43	63,43	63,43	63,43	63,43	63,43	63,43	63,43
Расход условного топлива в самые холодные сутки, т.у.т./сут	316,658	316,658	316,658	316,658	316,658	316,658	316,658	316,658
3.15 ФБУ ИК-12 УФСИН Рос- сии по Омской области	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	13,62	13,62	13,62	13,62	13,62	13,62	13,62	13,62
Располагаемая тепловая мощ-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
ность, Гкал/ч Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,216	0,216	0,216	0,216	0,216	0,216	0,216	0,216
Средневзвешенный срок службы, лет	16	17	18	19	20	21	26	30
Выработка тепловой энергии, тыс. Гкал	23,511	23,511	23,511	23,511	23,511	23,511	23,511	23,511
Собственные нужды тепловой энергии, тыс. Гкал	1,120	1,120	1,120	1,120	1,120	1,120	1,120	1,120
Отпуск тепловой энергии с коллекторов, тыс. Гкал	22,391	22,391	22,391	22,391	22,391	22,391	22,391	22,391
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Отпуск тепловой энергии с								
коллекторов внешним потре- бителям, тыс. Гкал	22,391	22,391	22,391	22,391	22,391	22,391	22,391	22,391
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	22,391	22,391	22,391	22,391	22,391	22,391	22,391	22,391
Коэффициент использования установленной тепловой мощ- ности, %	19,7	19,7	19,7	19,7	19,7	19,7	19,7	19,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	171,0	171,0	171,0	171,0	171,0	171,0	171,0	171,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	3,829	3,829	3,829	3,829	3,829	3,829	3,829	3,829
Теплота сгорания природного газа, ккал/н.м³	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	3,829	3,829	3,829	3,829	3,829	3,829	3,829	3,829
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	3,388	3,388	3,388	3,388	3,388	3,388	3,388	3,388
Теплота сгорания мазута, ккал/кг								
Расход мазута на отпуск тепловой энергии, тыс. т.у.т								
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т								
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	5,91	5,91	5,91	5,91	5,91	5,91	5,91	5,91
Тепловая нагрузка на коллек- торах в переходный период, Гкал/ч	2,85	2,85	2,84	2,83	2,83	2,82	2,79	2,77
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	1,81	1,81	1,81	1,81	1,81	1,81	1,81	1,81
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	1,011	1,011	1,011	1,011	1,011	1,011	1,011	1,011
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,488	0,487	0,485	0,484	0,483	0,482	0,477	0,473
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,310	0,310	0,310	0,310	0,310	0,310	0,310	0,310
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	4,03	4,03	4,03	4,03	4,03	4,03	4,03	4,03
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	3,10	3,10	3,10	3,10	3,10	3,10	3,10	3,10
Расход условного топлива в самые холодные сутки, т.у.т./сут	16,554	16,554	16,554	16,554	16,554	16,554	16,554	16,554
Расход мазута в самые холод- ные сутки, т.н.т/сут	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Нормативный неснижаемый запас мазута, т.н.т.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Нормативный эксплуатацион- ный запас мазута, т.н.т.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
3.17 ПАО "Омскшина"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощность, Гкал/ч	318,50	318,50	318,50	318,50	318,50	318,50	318,50	318,50
Располагаемая тепловая мощ- ность, Гкал/ч	36,78	35,52	35,52	35,52	35,52	35,52	35,52	35,52
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	88,267	88,267	88,267	88,267	88,267	88,267	88,267	88,267
Средневзвешенный срок службы, лет	31	32	33	34	35	36	41	45
Выработка тепловой энергии, тыс. Гкал	650,155	654,701	651,728	651,728	651,617	651,394	648,647	644,591
Собственные нужды тепловой энергии, тыс. Гкал	68,941	74,220	74,220	74,220	74,220	74,220	74,220	74,220

Отпуск тепловой энергии с коллекторов, тыс. Гкал	581,214	580,481	577,508	577,508	577,397	577,174	574,427	570,371
Хозяйственные нужды тепловой энергии, тыс. Гкал	388,634	380,036	380,036	380,036	380,036	380,036	380,036	380,036
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	192,580	200,445	197,472	197,472	197,361	197,138	194,391	190,335
Потери тепловой энергии в тепловых сетях, тыс. Гкал	100,359	111,329	111,329	111,329	111,218	110,995	108,247	104,192
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	92,221	89,116	86,143	86,143	86,143	86,143	86,143	86,143
Коэффициент использования установленной тепловой мощ- ности, %	23,3	23,5	23,4	23,4	23,4	23,3	23,2	23,1
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	187,3	188,8	188,8	188,8	188,8	188,8	188,8	188,8
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	108,849	109,595	109,034	109,034	109,013	108,971	108,452	107,686
Теплота сгорания природного газа, ккал/н.м³	8253	8253	8253	8253	8253	8253	8253	8253
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	108,849	109,595	109,034	109,034	109,013	108,971	108,452	107,686
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	92,322	92,956	92,480	92,480	92,462	92,426	91,986	91,337
Теплота сгорания мазута, ккал/кг								
Расход мазута на отпуск тепловой энергии, тыс. т.у.т								
Расход мазута на отпуск тепловой энергии, тыс. т.н.т								
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	11,39	11,39	11,39	11,39	11,39	11,39	11,39	11,39
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	50,76	50,81	50,55	50,28	50,02	49,75	48,43	47,37
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	36,78	35,52	35,52	35,52	35,52	35,52	35,52	35,52
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	2,134	2,151	2,151	2,151	2,151	2,151	2,151	2,151
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	9,507	9,593	9,543	9,493	9,443	9,394	9,144	8,944
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	6,888	6,706	6,706	6,706	6,706	6,706	6,706	6,706
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	39,05	39,05	39,05	39,05	39,05	39,05	39,05	39,05
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	30,04	30,04	30,04	30,04	30,04	30,04	30,04	30,04
Расход условного топлива в самые холодные сутки, т.у.т./сут	175,538	176,964	176,964	176,964	176,964	176,964	176,964	176,964
Расход мазута в самые холод- ные сутки, т.н.т/сут	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Нормативный неснижаемый запас мазута, т.н.т.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Нормативный эксплуатацион- ный запас мазута, т.н.т.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Выработка электрической энергии, тыс. кВтч	22916	21700	21700	21700	21700	21700	21700	21700
Собственные нужды электрической энергии, тыс. кВтч	22916	21700	21700	21700	21700	21700	21700	21700
Отпуск электрической энергии с шин, тыс. кВтч	0	0						
Удельный расход условного топлива на выработку электрической энергии, гр/кВтч								
Расход газа на отпуск электрической энергии, тыс. т.у.т								

3.19 ООО "Энергопоставка"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	2,26	2,26	2,26	2,26	2,26	2,26	2,26	2,26
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,056	0,056	0,056	0,056	0,056	0,056	0,056	0,056
Средневзвешенный срок службы, лет	14	15	16	17	18	19	24	28
Выработка тепловой энергии, тыс. Гкал	6,091	6,091	6,091	6,091	6,090	6,088	6,066	6,033
Собственные нужды тепловой энергии, тыс. Гкал	0,290	0,290	0,290	0,290	0,290	0,290	0,290	0,290
Отпуск тепловой энергии с коллекторов, тыс. Гкал	5,801	5,801	5,801	5,801	5,800	5,798	5,776	5,743
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	5,801	5,801	5,801	5,801	5,800	5,798	5,776	5,743
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,912	0,912	0,912	0,912	0,911	0,910	0,887	0,854
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	4,889	4,889	4,889	4,889	4,889	4,889	4,889	4,889
Коэффициент использования установленной тепловой мощ- ности, %	30,8	30,8	30,8	30,8	30,8	30,8	30,6	30,5
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	156,2	156,2	156,2	156,2	156,2	156,2	156,2	156,2
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,912	0,906	0,906	0,906	0,906	0,906	0,902	0,897
Теплота сгорания природного газа, ккал/н.м³	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,912	0,906	0,906	0,906	0,906	0,906	0,902	0,897
Расход природного газа на от- пуск тепловой энергии, млн. н. м³	0,811	0,802	0,802	0,802	0,802	0,801	0,798	0,794
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	2,54	2,54	2,54	2,54	2,54	2,54	2,54	2,54
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,59	0,59	0,59	0,58	0,58	0,58	0,57	0,55
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,396	0,396	0,396	0,396	0,396	0,396	0,396	0,396
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,092	0,092	0,092	0,091	0,091	0,090	0,088	0,087
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	1,73	1,73	1,73	1,73	1,73	1,73	1,73	1,73
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,33	1,33	1,33	1,33	1,33	1,33	1,33	1,33
Расход условного топлива в самые холодные сутки, т.у.т./сут	6,495	6,495	6,495	6,495	6,495	6,495	6,495	6,495
3.20 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	1,15	1,15	1,15	1,15	1,15	1,15	1,15	1,15
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,001
Средневзвешенный срок службы, лет	13	14	15	16	17	18	23	27

Выработка тепловой энергии, тыс. Гкал	0,107	0,107	0,107	0,107	0,107	0,107	0,107	0,107
Собственные нужды тепловой энергии, тыс. Гкал	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,005
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,102	0,102	0,102	0,102	0,102	0,102	0,102	0,102
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,102	0,102	0,102	0,102	0,102	0,102	0,102	0,102
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,102	0,102	0,102	0,102	0,102	0,102	0,102	0,102
Коэффициент использования установленной тепловой мощ- ности, %	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	189,4	189,4	189,4	189,4	189,4	189,4	189,4	189,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,019	0,019	0,019	0,019	0,019	0,019	0,019	0,019
Теплота сгорания угля, ккал/кг	5100	5100	5100	5100	5100	5100	5100	5100
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,019	0,019	0,019	0,019	0,019	0,019	0,019	0,019
Расход угля на отпуск тепло- вой энергии, тыс. т.н.т	0,017	0,027	0,027	0,027	0,027	0,027	0,027	0,027
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,008
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,002
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,03	0,03	0,03	0,03	0,03	0,03	0,03	0,03
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,124	0,124	0,124	0,124	0,124	0,124	0,124	0,124
Расход угля в самые холод- ные сутки, т.н.т/сут	0,170	0,170	0,170	0,170	0,170	0,170	0,170	0,170
Нормативный неснижаемый запас угля, т.н.т.	1,19	1,19	1,19	1,19	1,19	1,19	1,19	1,19
Нормативный эксплуатацион- ный запас угля, т.н.т.	3,93	3,93	3,93	3,93	3,93	3,93	3,93	3,93
4.11 ФБУ ИК-З УФСИН России по Омской области	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	11,38							
Располагаемая тепловая мощ- ность, Гкал/ч	0,00							
Среднегодовые собственные и	0,147							
хозяйственные нужды, Гкал/ч Средневзвешенный срок	16							
службы, лет Выработка тепловой энергии, тыс. Гкал	15,980							
тыс. ткал Собственные нужды тепловой энергии, тыс. Гкал	0,761							

Отпуск тепловой энергии с коллекторов, тыс. Гкал	15,219							
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000							
Отпуск тепловой энергии с коллекторов внешним потре-	15,219							
бителям, тыс. Гкал Потери тепловой энергии в	0,000							
тепловых сетях, тыс. Гкал Полезный отпуск тепловой энергии потребителям, тыс.	15,219							
Гкал Коэффициент использования	15,219							
установленной тепловой мощ- ности, %	16,0							
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	211,0							
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	3,211							
Теплота сгорания мазута, ккал/кг	9700							
Расход мазута на отпуск теп- ловой энергии, тыс. т.у.т	3,211							
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т	2,317							
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	5,96							
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,38							
Тепловая нагрузка на коллек- торах в летний период, Гкал/ч	0,00							
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	1,257							
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,291							
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000							
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	4,06							
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	3,13							
Расход условного топлива в самые холодные сутки, т.у.т./сут	20,582							
Расход мазута в самые холод- ные сутки, т.н.т/сут	14,853							
Нормативный неснижаемый запас мазута, т.н.т.	103,97							
Нормативный эксплуатационный запас мазута, т.н.т.	342,75							
4.12 ПАО "Омский каучук" Установленная тепловая мощ-	2019	2020	2021	2022	2023	2024	2029	2033
ность, Гкал/ч Располагаемая тепловая мощ-	416,00	416,00	416,00	416,00	416,00	416,00	416,00	416,00
ность, Гкал/ч Среднегодовые собственные и	315,32	315,32	315,32	315,32	315,32	315,32	315,32	315,32
хозяйственные нужды, Гкал/ч	5,530	5,530	5,530	5,530	5,530	5,530	5,530	5,530
службы, лет Выработка тепловой энергии,	14	15	16	17	18	19	24	28
тыс. Гкал Собственные нужды тепловой	1577,46	1577,46	1577,46	1577,46	1577,46	1577,46	1577,46	1577,46
энергии, тыс. Гкал Отпуск тепловой энергии с	28,667	28,667	28,667	28,667	28,667	28,667	28,667	28,667
коллекторов, тыс. Гкал Хозяйственные нужды тепло-	1548,79	1548,79	1548,79	1548,79	1548,79	1548,79	1548,79	1548,79
вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	1548,8	1548,8	1548,8	1548,8	1548,8	1548,8	1548,8	1548,8
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0	0	0	0	0	0	0	0
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	1548,8	1548,790	1548,790	1548,790	1548,790	1548,790	1548,790	1548,790
Коэффициент использования установленной тепловой мощ- ности, %	43,3	43,3	43,3	43,3	43,3	43,3	43,3	43,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	187,4	173,4	173,4	173,4	173,4	173,4	173,4	173,4
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	268,607	268,607	268,607	268,607	268,607	268,607	268,607	268,607
Теплота сгорания природного газа, ккал/н.м³	8151	8151	8151	8151	8151	8151	8151	8151
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	268,607	268,607	268,607	268,607	268,607	268,607	268,607	268,607
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	230,677	230,677	230,677	230,677	230,677	230,677	230,677	230,677
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	21,10	21,10	21,10	21,10	21,10	21,10	21,10	21,10
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	365,07	364,40	363,73	363,06	362,39	361,72	358,37	355,69
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	360,96	360,29	359,62	358,95	358,28	357,61	354,26	351,58
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	3,953	3,659	3,659	3,659	3,659	3,659	3,659	3,659
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	68,414	63,198	63,082	62,966	62,849	62,733	62,152	61,687
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	67,644	62,485	62,369	62,253	62,136	62,020	61,439	60,974
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	240,45	240,45	240,45	240,45	240,45	240,45	240,45	240,45
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	184,96	184,96	184,96	184,96	184,96	184,96	184,96	184,96
Расход условного топлива в самые холодные сутки, т.у.т./сут	1081,458	1000,839	1000,839	1000,839	1000,839	1000,839	1000,839	1000,839
4.30 ООО "Витязь и К"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	1,50	1,50	1,50	1,50	1,50	1,50	1,50	1,50
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014
Средневзвешенный срок службы, лет	8	9	10	11	12	13	18	22
Выработка тепловой энергии, тыс. Гкал	1,487	1,487	1,487	1,487	1,487	1,487	1,487	1,487
Собственные нужды тепловой энергии, тыс. Гкал	0,071	0,071	0,071	0,071	0,071	0,071	0,071	0,071
Отпуск тепловой энергии с коллекторов, тыс. Гкал	1,416	1,416	1,416	1,416	1,416	1,416	1,416	1,416
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	1,416	1,416	1,416	1,416	1,416	1,416	1,416	1,416
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	1,416	1,416	1,416	1,416	1,416	1,416	1,416	1,416

Коэффициент использования установленной тепловой мощ- ности, %	11,3	11,3	11,3	11,3	11,3	11,3	11,3	11,3
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,0	158,0	158,0	158,0	158,0	158,0	158,0	158,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,224	0,224	0,224	0,224	0,224	0,224	0,224	0,224
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,224	0,224	0,224	0,224	0,224	0,224	0,224	0,224
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	0,198	0,198	0,198	0,198	0,198	0,198	0,198	0,198
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,65	0,65	0,65	0,65	0,65	0,65	0,65	0,65
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,15	0,15	0,15	0,15	0,15	0,15	0,14	0,14
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,103	0,103	0,103	0,103	0,103	0,103	0,103	0,103
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,024	0,024	0,024	0,023	0,023	0,023	0,023	0,022
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,44	0,44	0,44	0,44	0,44	0,44	0,44	0,44
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34
Расход условного топлива в самые холодные сутки, т.у.т./сут	1,682	1,682	1,682	1,682	1,682	1,682	1,682	1,682
4.31 000 "ПТЭ"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	13,80	13,80	13,80	13,80	13,80	13,80	13,80	13,80
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,246	0,246	0,246	0,246	0,246	0,246	0,246	0,246
Средневзвешенный срок службы, лет	9	10	11	12	13	14	19	23
Выработка тепловой энергии, тыс. Гкал	25,592	25,592	25,592	25,592	25,592	25,592	25,592	25,592
Собственные нужды тепловой энергии, тыс. Гкал	1,276	1,276	1,276	1,276	1,276	1,276	1,276	1,276
Отпуск тепловой энергии с коллекторов, тыс. Гкал	24,316	24,316	24,316	24,316	24,316	24,316	24,316	24,316
Коллекторов, тыс. т кал Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	24,316	24,316	24,316	24,316	24,316	24,316	24,316	24,316
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	24,316	24,316	24,316	24,316	24,316	24,316	24,316	24,316
Коэффициент использования установленной тепловой мощ- ности, %	21,2	21,2	21,2	21,2	21,2	21,2	21,2	21,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	160,7	160,7	160,7	160,7	160,7	160,7	160,7	160,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	1,868	3,908	3,908	3,908	3,908	3,908	3,908	3,908

Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	1,868	3,908	3,908	3,908	3,908	3,908	3,908	3,908
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	1,653	3,462	3,462	3,462	3,462	3,462	3,462	3,462
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	3,45	3,45	3,45	3,45	3,45	3,45	3,45	3,45
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	1,17	1,17	1,16	1,16	1,16	1,16	1,15	1,15
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,53	0,53	0,53	0,53	0,53	0,52	0,52	0,51
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,554	0,554	0,554	0,554	0,554	0,554	0,554	0,554
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,188	0,187	0,187	0,187	0,187	0,187	0,185	0,185
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,085	0,085	0,085	0,085	0,084	0,084	0,083	0,082
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	2,28	2,28	2,28	2,28	2,28	2,28	2,28	2,28
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	1,76	1,76	1,76	1,76	1,76	1,76	1,76	1,76
Расход условного топлива в самые холодные сутки, т.у.т./сут	8,811	8,811	8,811	8,811	8,811	8,811	8,811	8,811
4.32 ООО "Феод"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	23,44	23,44	23,44	23,44	23,44	23,44	23,44	23,44
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,047	0,047	0,047	0,047	0,047	0,047	0,047	0,047
Средневзвешенный срок службы, лет	1	2	3	4	5	6	11	15
Выработка тепловой энергии, тыс. Гкал	5,167	6,728	6,728	6,728	6,728	6,728	33,157	33,124
Собственные нужды тепловой энергии, тыс. Гкал	0,246	0,246	0,246	0,246	0,246	0,246	0,246	0,246
Отпуск тепловой энергии с коллекторов, тыс. Гкал	4,921	6,482	6,482	6,482	6,482	6,482	32,911	32,878
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	4,921	6,482	6,482	6,482	6,482	6,482	32,911	32,878
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,120	0,164	0,164	0,164	0,164	0,163	0,881	0,848
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	4,801	6,318	6,318	6,318	6,318	6,318	32,030	32,030
Коэффициент использования установленной тепловой мощ- ности, %	2,5	3,3	3,3	3,3	3,3	3,3	16,1	16,1
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,0	158,0	158,0	158,0	158,0	158,0	158,0	158,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,778	1,024	1,024	1,024	1,024	1,024	5,200	5,195
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,778	1,024	1,024	1,024	1,024	1,024	5,200	5,195
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	0,688	0,908	0,908	0,908	0,907	0,907	4,608	4,603

Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	1,20	1,64	1,64	1,64	1,64	1,64	9,10	9,10
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,43	0,60	0,58	0,57	0,57	0,57	3,15	3,07
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,21	0,29	0,27	0,27	0,27	0,27	1,46	1,39
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,190	0,260	0,260	0,260	0,260	0,260	1,438	1,438
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,068	0,094	0,091	0,091	0,091	0,091	0,498	0,485
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,032	0,046	0,043	0,043	0,043	0,043	0,231	0,219
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,61	0,61	0,61	0,61	0,61	0,61	0,61	0,61
Расход условного топлива в самые холодные сутки, т.у.т./сут	3,028	3,028	3,028	3,028	3,028	3,028	3,028	3,028
5.07 ПАО "Сатурн"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	56,00	56,00	56,00					
Располагаемая тепловая мощ- ность, Гкал/ч	1,48	1,48	1,48					
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,334	0,334	0,334					
Средневзвешенный срок службы, лет	40	41	42					
Выработка тепловой энергии, тыс. Гкал	36,302	36,302	36,302					
Собственные нужды тепловой энергии, тыс. Гкал	1,729	1,729	1,729					
Отпуск тепловой энергии с коллекторов, тыс. Гкал	34,573	34,573	34,573					
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000					
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	34,573	34,573	34,573					
Потери тепловой энергии в тепловых сетях, тыс. Гкал	1,257	1,257	1,257					
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	33,316	33,316	33,316					
Коэффициент использования установленной тепловой мощ- ности, %	7,4	7,4	7,4					
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	184,8	184,8	184,8					
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	6,389	6,389	6,389					
Теплота сгорания мазута, ккал/кг	9700	9700	9700					
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	6,389	6,389	6,389					
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т	4,611	4,611	4,611					
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	11,78	11,78	11,78					
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	4,60	4,60	4,59					
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	2,39	2,39	2,39					
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	2,177	2,177	2,177					

Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,850	0,849	0,848					
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,441	0,441	0,441					
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	8,77	8,77	8,77					
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	6,75	6,75	6,75					
Расход условного топлива в самые холодные сутки, т.у.т./сут	38,915	38,915	38,915					
Расход мазута в самые холод- ные сутки, т.н.т/сут	28,083	28,083	28,083					
Нормативный неснижаемый запас мазута, т.н.т.	196,58	196,58	196,58					
Нормативный эксплуатационный запас мазута, т.н.т.	648,07	648,07	648,07					
5.16 ООО "ЮзаЭнергоТерм"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	1,60	1,60	1,60	1,60	1,60	1,60	1,60	1,60
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,030	0,030	0,030	0,030	0,030	0,030	0,030	0,030
Средневзвешенный срок службы, лет	7	8	9	10	11	12	17	21
Выработка тепловой энергии, тыс. Гкал	3,213	3,213	3,213	3,213	3,213	3,213	3,213	3,213
Собственные нужды тепловой	0,153	0,153	0,153	0,153	0,153	0,153	0,153	0,153
энергии, тыс. Гкал Отпуск тепловой энергии с	3,060	3,060	3,060	3,060	3,060	3,060	3,060	3,060
коллекторов, тыс. Гкал Хозяйственные нужды тепло-	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
вой энергии, тыс. Гкал Отпуск тепловой энергии с коллекторов внешним потре-	3,060	3,060	3,060	3,060	3,060	3,060	3,060	3,060
бителям, тыс. Гкал Потери тепловой энергии в	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
тепловых сетях, тыс. Гкал Полезный отпуск тепловой	•		,		·	•		-
энергии потребителям, тыс. Гкал	3,060	3,060	3,060	3,060	3,060	3,060	3,060	3,060
Коэффициент использования установленной тепловой мощ- ности, %	22,9	22,9	22,9	22,9	22,9	22,9	22,9	22,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	224,1	224,1	224,1	224,1	224,1	224,1	224,1	224,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,686	0,686	0,686	0,686	0,686	0,686	0,686	0,686
Теплота сгорания угля, ккал/кг	5280	5280	5280	5280	5280	5280	5280	5280
Расход угля на отпуск тепловой энергии, тыс. т.у.т	0,686	0,686	0,686	0,686	0,686	0,686	0,686	0,686
Расход угля на отпуск тепло- вой энергии, тыс. т.н.т	0,909	0,909	0,909	0,909	0,909	0,909	0,909	0,909
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	1,20	1,20	1,20	1,20	1,20	1,20	1,20	1,20
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,28	0,28	0,28	0,27	0,27	0,27	0,27	0,26
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,269	0,269	0,269	0,269	0,269	0,269	0,269	0,269
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,062	0,062	0,062	0,062	0,061	0,061	0,060	0,059
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,82	0,82	0,82	0,82	0,82	0,82	0,82	0,82
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63
Расход условного топлива в самые холодные сутки, т.у.т./сут	4,405	4,405	4,405	4,405	4,405	4,405	4,405	4,405
Расход угля в самые холод- ные сутки, т.н.т/сут	5,840	5,840	5,840	5,840	5,840	5,840	5,840	5,840
Нормативный неснижаемый запас угля, т.н.т.	40,88	40,88	40,88	40,88	40,88	40,88	40,88	40,88
Нормативный эксплуатацион- ный запас угля, т.н.т.	134,77	134,77	134,77	134,77	134,77	134,77	134,77	134,77
5.17 ООО "Современные тех- нологии"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	1,24	1,24	1,24	1,24	1,24	1,24	1,24	1,24
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,013	0,013	0,013	0,013	0,013	0,013	0,013	0,013
Средневзвешенный срок службы, лет	33	34	35	36	37	38	43	47
Выработка тепловой энергии, тыс. Гкал	2,246	2,246	2,246	2,246	2,246	2,246	2,246	2,246
Собственные нужды тепловой энергии, тыс. Гкал	0,065	0,065	0,065	0,065	0,065	0,065	0,065	0,065
Отпуск тепловой энергии с коллекторов, тыс. Гкал	2,181	2,181	2,181	2,181	2,181	2,181	2,181	2,181
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	2,181	2,181	2,181	2,181	2,181	2,181	2,181	2,181
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	2,181	2,181	2,181	2,181	2,181	2,181	2,181	2,181
Коэффициент использования установленной тепловой мощ- ности, %	20,7	20,7	20,7	20,7	20,7	20,7	20,7	20,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	187,1	187,1	187,1	187,1	187,1	187,1	187,1	187,1
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,408	0,408	0,408	0,408	0,408	0,408	0,408	0,408
Теплота сгорания природного газа, ккал/н.м³	8760	8760	8760	8760	8760	8760	8760	8760
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,408	0,408	0,408	0,408	0,408	0,408	0,408	0,408
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,326	0,326	0,326	0,326	0,326	0,326	0,326	0,326
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,91	0,91	0,91	0,91	0,91	0,91	0,91	0,91
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,25	0,25	0,25	0,25	0,25	0,24	0,24	0,23
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,09	0,09	0,09	0,09	0,09	0,08	0,08	0,07
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,170	0,170	0,170	0,170	0,170	0,170	0,170	0,170
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,047	0,047	0,047	0,046	0,046	0,046	0,045	0,044
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,017	0,017	0,016	0,016	0,016	0,016	0,015	0,014
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,63	0,63	0,63	0,63	0,63	0,63	0,63	0,63

Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48
Расход условного топлива в самые холодные сутки, т.у.т./сут	2,823	2,823	2,823	2,823	2,823	2,823	2,823	2,823
5.23 ООО "Теплогенерирую- щий комплекс"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	324,13	324,13	324,13	324,13	324,13	324,13	324,13	324,13
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	3,070	3,070	3,070	3,070	3,070	3,070	3,070	3,070
Средневзвешенный срок службы, лет	42	43	44	45	46	47	52	56
Выработка тепловой энергии, тыс. Гкал	438,449	483,534	454,400	463,614	467,030	466,878	479,666	476,836
Собственные нужды тепловой энергии, тыс. Гкал	15,916	20,550	19,312	19,312	19,312	19,312	19,312	19,312
Отпуск тепловой энергии с коллекторов, тыс. Гкал	422,533	462,984	435,088	444,302	447,718	447,566	460,354	457,524
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	422,533	462,984	435,088	444,302	447,718	447,566	460,354	457,524
Потери тепловой энергии в тепловых сетях, тыс. Гкал	72,267	78,781	74,034	75,363	75,759	75,607	75,546	72,716
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	350,266	384,203	361,054	368,939	371,959	371,959	384,808	384,808
Коэффициент использования установленной тепловой мощ- ности, %	15,4	17,0	16,0	16,3	16,4	16,4	16,9	16,8
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,8	159,2	159,2	159,2	159,2	159,2	159,2	159,2
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	67,118	73,707	69,266	70,733	71,277	71,253	73,288	72,838
Теплота сгорания природного газа, ккал/н.м³	8179	8150	8150	8150	8150	8150	8150	8150
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	67,118	73,707	69,266	70,733	71,277	71,253	73,288	72,838
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	57,443	63,307	59,492	60,752	61,219	61,198	62,947	62,560
Теплота сгорания мазута, ккал/кг								
Расход мазута на отпуск тепловой энергии, тыс. т.у.т Расход мазута на отпуск теп-								
ловой энергии, тыс. т.н.т								
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	134,34	134,34	134,34	136,76	137,61	137,61	140,99	140,99
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	45,46	45,27	45,08	45,75	45,78	45,55	45,95	45,15
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	20,78	20,59	20,40	20,63	20,50	20,26	20,03	19,23
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	21,334	21,388	21,388	21,772	21,908	21,908	22,446	22,446
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	7,220	7,207	7,177	7,284	7,289	7,251	7,315	7,188
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	3,300	3,278	3,248	3,284	3,263	3,226	3,189	3,062
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	93,53	93,53	93,53	93,53	93,53	93,53	93,53	93,53
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	71,95	71,95	71,95	71,95	71,95	71,95	71,95	71,95

Расход условного топлива в самые холодные сутки, т.у.т./сут	356,466	357,364	357,364	357,364	357,364	357,364	357,364	357,364
Расход мазута в самые холод- ные сутки, т.н.т/сут	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Нормативный неснижаемый запас мазута, т.н.т.	0	0	0	0	0	0	0	0
Нормативный эксплуатацион- ный запас мазута, т.н.т.	0	0	0	0	0	0	0	0
Выработка электрической энергии, тыс. кВтч	43103,9	43094	43094	43094	43094	43094	43094	43094
Собственные нужды ГПУ, тыс. кВтч	621,9	621,7	621,7	621,7	621,7	621,7	621,7	621,7
Отпуск электрической энергии с шин ГПУ, тыс. кВтч	24515,8	24510,2	24510,2	24510,2	24510,2	24510,2	24510,2	24510,2
Отпуск электрической энергии на собственное потребление, тыс. кВтч								
Отпуск электрической энергии в сеть внешним потребителям, тыс. кВтч								
Удельный расход условного топлива на отпуск электриче- ской энергии от ГПУ, г/кВтч	195,43	198,86	198,86	198,86	198,86	198,86	198,86	198,86
Расход газа на отпуск электрической энергии, тыс. т.у.т	8,42	8,6	8,6	8,6	8,6	8,6	8,6	8,6
Удельный расход условного топлива на выработку э/э от ГПУ, кг/Гкал								
5.24 ООО "Теплогенерирую- щий комплекс"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	45,30	45,30	45,30	45,30	45,30	45,30	45,30	45,30
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	1,627	1,627	1,627	1,627	1,627	1,627	1,627	1,627
Средневзвешенный срок службы, лет	29	30	31	32	33	34	39	43
Выработка тепловой энергии, тыс. Гкал	83,034	83,414	83,096	83,096	82,925	82,899	82,572	82,091
Собственные нужды тепловой энергии, тыс. Гкал	8,436	3,545	3,532	3,532	3,532	3,532	3,532	3,532
Отпуск тепловой энергии с коллекторов, тыс. Гкал	74,598	79,869	79,564	79,564	79,393	79,367	79,040	78,559
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потре- бителям, тыс. Гкал	74,598	79,869	79,564	79,564	79,393	79,367	79,040	78,559
Потери тепловой энергии в тепловых сетях, тыс. Гкал	13,019	13,255	13,255	13,255	13,214	13,188	12,861	12,379
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	61,579	66,614	66,309	66,309	66,179	66,179	66,179	66,179
Коэффициент использования установленной тепловой мощ- ности, %	20,9	21,0	20,9	20,9	20,9	20,9	20,8	20,7
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	165,9	170,6	170,6	170,6	170,6	170,6	170,6	170,6
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	12,375	13,626	13,574	13,574	13,544	13,540	13,484	13,402
Теплота сгорания природного газа, ккал/н.м³	8179	8150	8150	8150	8150	8150	8150	8150
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	12,375	13,626	13,574	13,574	13,544	13,540	13,484	13,402
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	10,591	11,703	11,658	11,658	11,633	11,629	11,582	11,511
Теплота сгорания мазута, ккал/кг	9700	9700	9700	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т								
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т								

Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	25,48	25,48	25,48	25,48	25,42	25,42	25,42	25,42
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	8,00	7,97	7,94	7,91	7,87	7,84	7,68	7,56
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	3,33	3,30	3,27	3,24	3,21	3,18	3,02	2,90
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	4,226	4,346	4,346	4,346	4,337	4,337	4,337	4,337
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	1,328	1,360	1,355	1,350	1,342	1,337	1,311	1,290
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,553	0,563	0,558	0,553	0,547	0,542	0,515	0,494
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	17,57	17,57	17,57	17,57	17,57	17,57	17,57	17,57
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	13,51	13,51	13,51	13,51	13,51	13,51	13,51	13,51
Расход условного топлива в самые холодные сутки, т.у.т./сут	69,953	71,935	71,935	71,935	71,935	71,935	71,935	71,935
Расход мазута в самые холод- ные сутки, т.н.т/сут	50,482	51,912	51,912	51,912	51,912	51,912	51,912	51,912
Нормативный неснижаемый запас мазута, т.н.т.	383	394	394	394	394	394	394	394
Нормативный эксплуатационный запас мазута, т.н.т.	68	70	70	70	70	70	70	70
5.25 КПОО "Центр питатель- ных смесей"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	2,90	2,90	2,90	2,90	2,90	2,90	2,90	2,90
Располагаемая тепловая мощность, Гкал/ч	0,20	0,20	0,20	0,20	0,20	0,20	0,20	0,20
Среднегодовые собственные и	0,024	0,024	0,024	0,024	0,024	0,024	0,024	0,024
хозяйственные нужды, Гкал/ч Средневзвешенный срок службы, лет	43	44	45	46	47	48	53	57
Выработка тепловой энергии,	2,647	2,647	2,647	2,647	2,647	2,647	2,647	2,647
тыс. Гкал Собственные нужды тепловой	0,126	0,126	0,126	0,126	0,126	0,126	0,126	0,126
энергии, тыс. Гкал Отпуск тепловой энергии с	2,521	2,521	2,521	2,521	2,521	2,521	2,521	2,521
коллекторов, тыс. Гкал Хозяйственные нужды тепло-	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
вой энергии, тыс. Гкал Отпуск тепловой энергии с коллекторов внешним потре-	2,521	2,521	2,521	2,521	2,521	2,521	2,521	2,521
бителям, тыс. Гкал Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	2,521	2,521	2,521	2,521	2,521	2,521	2,521	2,521
Коэффициент использования установленной тепловой мощ- ности, %	10,4	10,4	10,4	10,4	10,4	10,4	10,4	10,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,3	158,3	158,3	158,3	158,3	158,3	158,3	158,3
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,399	0,399	0,399	0,399	0,399	0,399	0,399	0,399
Теплота сгорания природного газа, ккал/н.м³	8220	8220	8220	8220	8220	8220	8220	8220
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,399	0,399	0,399	0,399	0,399	0,399	0,399	0,399
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,340	0,340	0,340	0,340	0,340	0,340	0,340	0,340
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	0,34	0,34	0,34	0,34	0,34	0,34	0,34	0,34

Тепловая нагрузка на коллекторах в переходный период,	0,30	0,30	0,30	0,30	0,30	0,30	0,30	0,30
Гкал/ч Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,23	0,23	0,23	0,23	0,23	0,23	0,23	0,23
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,054	0,054	0,054	0,054	0,054	0,054	0,054	0,054
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	0,047	0,047	0,047	0,047	0,047	0,047	0,047	0,047
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	0,037	0,037	0,037	0,037	0,037	0,037	0,037	0,037
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,27	0,27	0,27	0,27	0,27	0,27	0,27	0,27
Расход условного топлива в самые холодные сутки, т.у.т./сут	1,338	1,338	1,338	1,338	1,338	1,338	1,338	1,338
5.42 ООО "Теплогенерирую- щий коплекс" (БУЗ ОО "КОД")	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	12,04	12,04	12,04	12,04	12,04	12,04	12,04	12,04
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,074	0,074	0,074	0,074	0,074	0,074	0,074	0,074
Средневзвешенный срок службы, лет	14	15	16	17	18	19	24	28
Выработка тепловой энергии, тыс. Гкал	12,913	13,600	13,600	13,600	22,080	22,080	22,080	24,368
Собственные нужды тепловой энергии, тыс. Гкал	0,386	0,578	0,578	0,578	0,578	0,578	0,578	0,578
Отпуск тепловой энергии с коллекторов, тыс. Гкал	12,527	13,022	13,022	13,022	21,502	21,502	21,502	23,790
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	12,527	13,022	13,022	13,022	21,502	21,502	21,502	23,790
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	12,527	13,022	13,022	13,022	21,502	21,502	21,502	23,790
Коэффициент использования установленной тепловой мощ- ности, %	12,2	12,9	12,9	12,9	20,9	20,9	20,9	23,1
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	122,2	156,9	156,9	156,9	156,9	156,9	156,9	156,9
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	1,531	2,043	2,043	2,043	3,374	3,374	3,374	3,733
Теплота сгорания природного газа, ккал/н.м³	8169	8232	8232	8232	8232	8232	8232	8232
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	1,531	2,043	2,043	2,043	3,374	3,374	3,374	3,733
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	1,312	1,737	1,737	1,737	2,869	2,869	2,869	3,174
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т								
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т								
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	5,42	5,42	5,42	5,42	8,64	8,64	8,64	9,41

Тепловая нагрузка на коллек-								
торах в переходный период, Гкал/ч	1,30	1,30	1,30	1,30	2,13	1,97	1,97	2,19
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,31	0,31	0,31	0,31	0,55	0,39	0,39	0,46
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	0,662	0,850	0,850	0,850	1,356	1,356	1,356	1,476
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,159	0,204	0,204	0,204	0,335	0,310	0,310	0,343
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,037	0,048	0,048	0,048	0,087	0,062	0,062	0,073
Средняя тепловая нагрузка на коллекторах в самый холод- ный месяц, Гкал/ч	3,52	3,52	3,52	3,52	3,52	3,52	3,52	3,52
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	2,71	2,71	2,71	2,71	2,71	2,71	2,71	2,71
Расход условного топлива в самые холодные сутки, т.у.т./сут	10	13	13	13	13	13	13	13
Расход дизельного топлива в самые холодные сутки, т.н.т/сут	7	9	9	9	9	9	9	9
Нормативный неснижаемый запас дизельного топлива, т.н.т.	41	55	55	55	55	55	55	55
Нормативный эксплуатацион- ный запас дизельного топ- лива, т.н.т.	17	22	22	22	22	22	22	22
5.43 ООО "ПТЭ"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	9,46	9,46	9,46	9,46	9,46	9,46	9,46	9,46
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,205	0,205	0,205	0,205	0,205	0,205	0,205	0,205
Средневзвешенный срок службы, лет	11	12	13	14	15	16	21	25
Выработка тепловой энергии, тыс. Гкал	21,315	23,038	28,404	33,892	33,892	33,892	33,892	33,892
Собственные нужды тепловой энергии, тыс. Гкал	1,065	1,065	1,065	1,065	1,065	1,065	1,065	1,065
Отпуск тепловой энергии с коллекторов, тыс. Гкал	20,250	21,973	27,339	32,827	32,827	32,827	32,827	32,827
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	20,250	21,973	27,339	32,827	32,827	32,827	32,827	32,827
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	20,250	21,973	27,339	32,827	32,827	32,827	32,827	32,827
Коэффициент использования установленной тепловой мощ- ности, %	25,7	27,8	34,3	40,9	40,9	40,9	40,9	40,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	160,0	160,0	160,0	160,0	160,0	160,0	160,0	160,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	4,406	3,516	4,374	5,252	5,252	5,252	5,252	5,252
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	4,406	3,516	4,374	5,252	5,252	5,252	5,252	5,252
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	3,899	3,115	3,876	4,654	4,654	4,654	4,654	4,654
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	8,40	9,02	10,00	11,59	11,59	11,59	11,59	11,59

Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	2,88	3,05	3,39	3,96	3,95	3,95	3,92	3,90
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	1,33	1,39	1,55	1,81	1,81	1,80	1,78	1,76
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	1,344	1,443	1,600	1,854	1,854	1,854	1,854	1,854
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,461	0,488	0,543	0,633	0,632	0,631	0,627	0,624
Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,212	0,222	0,247	0,290	0,289	0,288	0,284	0,281
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	5,58	5,58	5,58	5,58	5,58	5,58	5,58	5,58
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	4,29	4,29	4,29	4,29	4,29	4,29	4,29	4,29
Расход условного топлива в самые холодные сутки, т.у.т./сут	21,427	21,427	21,427	21,427	21,427	21,427	21,427	21,427
5.44 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	0,53	0,53	0,53	0,53	0,53	0,53	0,53	0,53
Располагаемая тепловая мощ- ность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,003
Средневзвешенный срок службы, лет	15	16	17	18	19	20	25	29
Выработка тепловой энергии, тыс. Гкал	0,295	0,295	0,295	0,295	0,295	0,295	0,295	0,295
Собственные нужды тепловой энергии, тыс. Гкал	0,014	0,014	0,014	0,014	0,014	0,014	0,014	0,014
Отпуск тепловой энергии с коллекторов, тыс. Гкал	0,281	0,281	0,281	0,281	0,281	0,281	0,281	0,281
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	0,281	0,281	0,281	0,281	0,281	0,281	0,281	0,281
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	0,281	0,281	0,281	0,281	0,281	0,281	0,281	0,281
Коэффициент использования установленной тепловой мощ- ности, %	6,4	6,4	6,4	6,4	6,4	6,4	6,4	6,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	194,0	194,0	194,0	194,0	194,0	194,0	194,0	194,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055
Теплота сгорания мазута, ккал/кг	9800	9800	9800	9800	9800	9800	9800	9800
Расход мазута на отпуск теп- ловой энергии, тыс. т.у.т	0,055	0,055	0,055	0,055	0,055	0,055	0,055	0,055
Расход мазута на отпуск теп- ловой энергии, тыс. т.н.т	0,039	0,039	0,039	0,039	0,039	0,039	0,039	0,039
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	0,11	0,11	0,11	0,11	0,11	0,11	0,11	0,11
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,021	0,021	0,021	0,021	0,021	0,021	0,021	0,021
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,004

Максимальный часовой рас- ход условного топлива в лет- ний период, т.у.т/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,06	0,06	0,06	0,06	0,06	0,06	0,06	0,06
Расход условного топлива в самые холодные сутки, т.у.т./сут	0,340	0,340	0,340	0,340	0,340	0,340	0,340	0,340
Расход мазута в самые холод- ные сутки, т.н.т/сут	0,243	0,243	0,243	0,243	0,243	0,243	0,243	0,243
Нормативный неснижаемый запас мазута, т.н.т.	1,70	1,70	1,70	1,70	1,70	1,70	1,70	1,70
Нормативный эксплуатацион- ный запас мазута, т.н.т.	5,61	5,61	5,61	5,61	5,61	5,61	5,61	5,61
5.45 ФГБУ "ЦЖКУ" МО РФ	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ- ность, Гкал/ч	4,30	4,30	4,30	4,30	4,30	4,30	4,30	4,30
Располагаемая тепловая мощность, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	0,012	0,012	0,012	0,012	0,012	0,012	0,012	0,012
Средневзвешенный срок службы, лет	7	8	9	10	11	12	17	21
Выработка тепловой энергии, тыс. Гкал	1,288	1,288	1,288	1,288	1,288	1,288	1,288	1,288
Собственные нужды тепловой энергии, тыс. Гкал	0,061	0,061	0,061	0,061	0,061	0,061	0,061	0,061
Отпуск тепловой энергии с коллекторов, тыс. Гкал	1,227	1,227	1,227	1,227	1,227	1,227	1,227	1,227
Хозяйственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	1,227	1,227	1,227	1,227	1,227	1,227	1,227	1,227
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	1,227	1,227	1,227	1,227	1,227	1,227	1,227	1,227
Коэффициент использования установленной тепловой мощ- ности, %	3,4	3,4	3,4	3,4	3,4	3,4	3,4	3,4
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	158,0	158,0	158,0	158,0	158,0	158,0	158,0	158,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	0,194	0,194	0,194	0,194	0,194	0,194	0,194	0,194
Теплота сгорания природного газа, ккал/н.м³	7900	7900	7900	7900	7900	7900	7900	7900
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	0,194	0,194	0,194	0,194	0,194	0,194	0,194	0,194
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	0,172	0,172	0,172	0,172	0,172	0,172	0,172	0,172
Тепловая нагрузка на коллек- торах в осенне-зимний пе- риод, Гкал/ч	0,48	0,48	0,48	0,48	0,48	0,48	0,48	0,48
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,09
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Максимальный часовой рас- ход условного топлива в ОЗП, т.у.т/ч	0,076	0,076	0,076	0,076	0,076	0,076	0,076	0,076
Максимальный часовой рас- ход условного топлива в пере- ходный период, т.у.т/ч	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015
Средняя тепловая нагрузка на коллекторах в самый холодный месяц, Гкал/ч	0,32	0,32	0,32	0,32	0,32	0,32	0,32	0,32

Chorusa tonnonas normana no					ı			
Средняя тепловая нагрузка на коллекторах за три холодных месяца, Гкал/ч	0,25	0,25	0,25	0,25	0,25	0,25	0,25	0,25
Расход условного топлива в самые холодные сутки,	1,209	1,209	1,209	1,209	1,209	1,209	1,209	1,209
т.у.т./сут 5.46 ООО СМТ "Стройбетон"	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощ-	183,18	183,18	183,18	183,18	183,18	183,18	183,18	183,18
ность, Гкал/ч Располагаемая тепловая мощ-	-						•	-
ность, Гкал/ч Среднегодовые собственные и	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
хозяйственные нужды, Гкал/ч	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Средневзвешенный срок службы, лет	5	6	7	8	9	10	15	19
Выработка тепловой энергии, тыс. Гкал	59,012	64,900	73,400	79,400	88,399	102,376	149,155	180,021
Собственные нужды тепловой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов, тыс. Гкал	59,012	64,900	73,400	79,400	88,399	102,376	149,155	180,021
Хозяйственные нужды тепло- вой энергии, тыс. Гкал	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	59,012	64,900	73,400	79,400	88,399	102,376	149,155	180,021
Потери тепловой энергии в тепловых сетях, тыс. Гкал	5,900	9,900	11,400	12,400	13,399	14,880	18,757	20,650
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	53,112	55,0	62,0	67,0	75,0	87,5	130,4	159,4
Коэффициент использования установленной тепловой мощ- ности, %	3,7	4,0	4,6	4,9	5,5	6,4	9,3	11,2
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	157,8	153,0	153,0	153,0	153,0	153,0	153,0	153,0
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	9,029	9,930	11,230	12,148	13,525	15,664	22,821	27,543
Теплота сгорания природного газа, ккал/н.м ³	7910	7910	7910	7910	7910	7910	7910	7910
Расход природного газа на от- пуск тепловой энергии, тыс. т.у.т	9,029	9,930	11,230	12,148	13,525	15,664	22,821	27,543
Расход природного газа на от- пуск тепловой энергии, млн. н. м ³	7,990	8,787	9,938	10,751	11,969	13,862	20,195	24,374
Теплота сгорания дизельного топлива, ккал/кг	10600	10600	10600	10600	10600	10600	10600	10600
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Тепловая нагрузка на коллекторах в осенне-зимний период, Гкал/ч	20,54	34,24	35,01	38,09	39,54	44,00	56,87	65,05
Тепловая нагрузка на коллекторах в переходный период, Гкал/ч	7,33	11,89	11,69	12,64	13,04	14,24	18,19	20,99
Тепловая нагрузка на коллекторах в летний период, Гкал/ч	3,53	5,56	5,22	5,60	5,73	6,11	7,68	8,97
Нормативный неснижаемый запас дизельного топлива, т.н.т.	239	232	232	232	232	232	232	232
Нормативный эксплуатационный запас дизельного топлива, т.н.т.	788	764	764	764	764	764	764	764

Итоговые сводные показатели потребления топлива и отпуска тепла от котельных TCO представлены ниже (Таблица 5.5).

Таблица 5.5. Перспективное потребление топлива теплоснабжающими котельными г. Омска

Ведомственные котель-	•							
ные	2019	2020	2021	2022	2023	2024	2029	2033
Установленная тепловая мощность, Гкал/ч	3269,6	3258,2	3258,2	3202,2	2904,0	2898,2	2898,2	2759,8
Выработка тепловой энергии, тыс. Гкал	5032,3	5081,6	5079,4	5052,6	4830,7	4851,6	4863,7	4804,5
Число часов использова- ния УТМ, час	1539	1560	1559	1578	1663	1674	1678	1741
Отпуск тепловой энергии с коллекторов, тыс. Гкал	4833,3	4879,9	4879,5	4855,0	4648,7	4669,1	4682,3	4626,5
Коэффициент использования установленной тепловой мощности, %	17,6	17,8	17,8	18,0	19,0	19,1	19,2	19,9
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	151,7	152,0	151,4	151,3	150,6	150,6	150,9	150,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	733,4	741,8	738,7	734,6	700,2	703,0	706,6	697,2
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	809,6	820,9	821,1	823,7	789,4	792,2	795,5	785,9
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	696	704	705	707	678	680	684	676
Расход угля на отпуск теп- ловой энергии, тыс. т.у.т	1,91	1,91	1,91	1,91	1,91	1,91	1,91	1,91
Расход угля на отпуск тепловой энергии, тыс. т.н.т	2,6	2,6	2,6	2,6	2,6	2,6	2,6	2,6
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	12,5	9,3	6,4	0,1	0,1	0,1	0,1	0,1
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	9,0	6,7	4,6	0,04	0,04	0,04	0,04	0,04
Максимальный часовой расход условного топлива в ОЗП, т.у.т/ч	136	139	140	140	122	123	121	114
Максимальный часовой расход условного топлива в переходный период, т.у.т/ч	139	135	135	135	126	126	124	119
Максимальный часовой расход условного топлива в летний период, т.у.т/ч	112	107	106	107	102	101	100	96

Из таблиц видно, что по рассмотренным котельным расход топлива по годам меняется в зависимости от подключения новых потребителей и перевода потребителей на ТЭЦ. Изменение расхода условного топлива в рассматриваемый период происходит в прямой зависимости от отпуска тепла от котельных.

Расход газа по годам меняется в зависимости от нагрузки потребителей, расход угля в течение всего анализируемого периода существенно не меняется в связи отсутствием планирования приростов тепла на котельных, работающих на угле, использование мазута уменьшается в связи с закрытием котельной 5.07 ПАО «Сатурн» с установленной тепловой мощностью 56 Гкал/час.

Потребление топлива и отпуск тепла на теплоснабжающих котельных по годам более наглядно представлено на графике (Рисунок 5.1).

Рисунок 5.1 - Расход условного топлива и отпуск тепла от теплоснабжающих котельных по годам

Максимальный расход условного топлива и отпуск тепла прогнозируется в 2022 году в связи с подключением тепловой нагрузки на котельные 1.23 ООО «Тепловая компания», 4.32 ООО «Феод», ООО «ПТЭ».

Структура потребления природного газа, угля и мазута на теплоснабжающих котельных г. Омска представлена на диаграмме ниже:

Топливопотребление в тоннах условного топлива ведомственных котельных представлено на диаграмме (Рисунок 5.2).

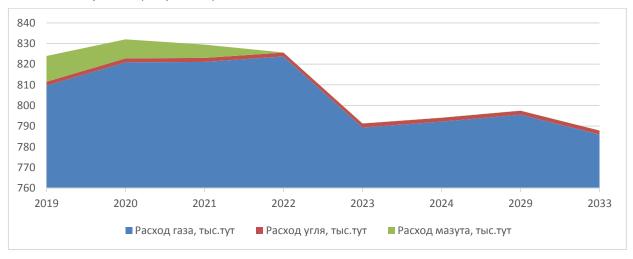


Рисунок 5.2 - Топливопотребление природного газа, угля и мазута на теплоснабжающих котельных г. Омска

Увеличение потребления природного газа связано с увеличением тепловой нагрузки на газовых котельных:

1.38 ΟΟΟ «ΠΤЭ»,

- 2.11 АО «Омсктрансмаш»,
- 3.05 ПО «Полет»;
- 5.23 OOO «TГКом»,
- 5.46 ООО СМТ «Стройбетон».

С 2023 года снижение потребления газа планируется за счет закрытия газовых котельных ПО "Полет" филиал ФГУП "ГКНПЦ им. М.В.Хруничева": 3.04 в 2023 году, 3.05 - в 2030 году.

Снижение потребления мазута связано с закрытием котельных 4.11 ФБУ ИК-3 УФСИН и 5.07 ПАО «Сатурн», работающих на мазуте и с переводом котельной 2.23 Филиала ОАО «РЖД» -СП 3-СД по тепловодоснабжению ст. Омск-пассажирский с 2021 года на сжигание газа.

Потребление угля на протяжении всего периода не меняется.

Распределение расхода угля, мазута и природного газа представлено в таблице ниже.

Таблица 5.6. Перспективное потребление топлива теплоснабжающими котельными г. Омска

Расход топлива	2019	2020	2021	2022	2023	2024	2029	2033
Расход газа, млн.н.м ³	696	704	705	707	678	680	684	676
Расход угля, тыс.тнт	3	3	3	3	3	3	3	3
Расход мазута,тыс.м ³	9,02	6,68	4,65	0,04	0,04	0,04	0,04	0,04

Увеличение отпуска тепла и расхода природного газа с 2019 года связано с подключением новых потребителей тепла.

Таблица 5.7. Расход условного топлива, используемого для производства тепловой энергии котельными теплоснабжающих организаций г. Омска

тсо	2019	2020	2021	2022	2023	2024	2029	2033
Расход газа, тыс.тут	810	821	821	824	789	792	796	786
Расход угля, тыс.тут	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Расход мазута, тыс.тут	12,47	9,26	6,44	0,05	0,05	0,05	0,05	0,05
Доля использования угля, %	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Доля использования мазута, %	1,5	1,1	0,7	0,01	0,01	0,01	0,01	0,01

Доля использования угля в производстве тепловой энергии на котельных теплоснабжающих организаций на протяжении всего прогнозируемого периода составляет меньше 1 %, доля использования мазута с 2022 года и до конца всего периода снижается до 0,01 %.

5.3 Описание изменений в перспективных топливных балансах за период, предшествующий актуализации схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных источников тепловой энергии

Для описания изменений в перспективных топливных балансах рассмотрим изменения расхода топлива (в тыс.тут) по диаграмме (Рисунок 5.3).

Рисунок 5.3 Перспективные расходы условного топлива котельных теплоснабжающих организаций действующей актуализации и актуализации 2018 года.

Расход условного топлива в действующей актуализации уменьшился в 2019 году за счет перевода в эксплуатацию котельных 5.21 по ул. Каховского, 3 и 5.39 по ул. Завертяева, 32 с установленной мощностью 39,9 и 17,1 Гкал/час и подключенной нагрузкой 17.8 и 16.35 Гкал/час соответственно в МП г. Омска «Тепловая компания», дальнейшее увеличение расхода топлива до 2023 года связано с подключением новых потребителей тепловой энергии.

Уменьшается расход условного топлива в 2023 году и к 2033 году за счет закрытия крупных газовых котельных 3.04 и 3.05 ПО "Полет" филиал ФГУП "ГКНПЦ им. М.В. Хруничева".

В предыдущей актуализации планировалось снижение отпуска тепловой энергии от котельной 3.04 в 2024 году.

6. ПЕРСПЕКТИВНЫЕ ТОПЛИВНЫЕ БАЛАНСЫ ПРОИЗВОДСТВЕННЫХ КОТЕЛЬНЫХ

Всего на территории города Омска по состоянию на 01.01.2020 год работают 98 котельных 84 организаций (29 производственно-отопительных, 8 - производственных и 61 отопительных) суммарной установленной мощностью 775,1 Гкал/час.

Из 98 производственных котельных:

- 14 котельных с небольшой установленной тепловой мощностью 0,23-3,6 Гкал/час работают на каменном угле,
 - 9 котельных работают на мазуте с установленной мощностью 1,16 4,14 Гкал/ч.
 - 66 котельных работают на природном газе,
 - 6 котельных на дизельном топливе с УТМ 0,09 0,28 Гкал/час.
- 3 котельных на отходах собственного производства (опилки, щепа) с УТМ 0,65 3,44 Гкал/час.

С 2020 года вводится в эксплуатацию новая производственная котельная 1.44 по ул. 2-я Солнечная, 42г.

6.1 Вид топлива, потребляемый источниками тепловой энергии, в том числе с использованием возобновляемых источников энергии и местных видов топлива

Из местных видов топлива на производственных котельных используется мазут и дизельное топливо производства, расположенного в городе Омске ОАО «Газпромнефть-ОНПЗ».

Возобновляемые источники энергии в г. Омске не используются в связи с отсутствием опыта работы проектов-аналогов технологий использования низкопотенциальной энергии канализационных стоков, солнечной, геотермальной энергии, энергии биомасс.

В качестве вторичного топлива на производственных котельных промышленных предприятиях используется топливо в виде отходов производства:

- 1.36 котельная ЗАО «АВА- компани» (производство по глубокой переработке древесины), топливо -щепа, установленная тепловая мощность котельной 3,44 Гкал/час, подключенная нагрузка в горячей воде 1,6 Гкал/час, потребителями тепловой энергии являются производственные помещения предприятия.
- 4.21 котельная ООО «Сибирская лесопромышленная компания» (производство фанеры, деревянных панелей, древесных плит), топливо щепа, установленная мощность 6,5 Гкал/ч, подключенная нагрузка в паре 1,1 Гкал/ч, в горячей воде 1,83 Гкал/ч, тепловая энергия используется в производственных процессах производства и на отопление производственных помещений.
 - 5.30 котельная ООО «Форест» (изготовление мебели, дверных блоков, мебельных щитов

из массива сосны), топливо – дрова, опилки, установленная мощность 0,65 Гкал/ч, подключенная нагрузка 0,22 Гкал/ч.

6.2 Виды топлива, их доля и значение низшей теплоты сгорания топлива, используемые для производства тепловой энергии

На производственные котельные природный газ поставляется от газораспределительных станций по газопроводу с калорийностью 8073-8099 ккал/кг, в качестве топлива используется каменный уголь марки Д, мазут марки ТКМ-16, и в качестве резервного - дизельное топливо марки ДТ-35.

Далее представлен сводный баланс по производственным котельным г. Омска с перспективным периодом до 2033 года.

Таблица 6.1. Сводный топливный баланс производственных котельных г. Омска на весь перспективный период до 2033 года

Производственные ко-	2019	2020	2021	2022	2023	2024	2029	2033
тельные	20.0							
Установленная тепловая мощность, Гкал/ч	775,10	775,20	775,20	775,20	775,20	775,20	775,20	775,20
Располагаемая тепловая мощность, Гкал/ч	775,10	775,20	775,20	775,20	775,20	775,20	775,20	775,20
Среднегодовые собственные и хозяйственные нужды, Гкал/ч	17,78	17,78	17,78	17,78	17,78	17,78	17,78	17,78
Средневзвешенный срок службы, лет	15,69	16,54	17,54	18,54	19,54	20,54	25,54	29,54
Выработка тепловой энер- гии, тыс. Гкал	2416,91	2417,01	2417,01	2417,01	2416,99	2416,95	2416,46	2415,75
Собственные нужды тепловой энергии, тыс. Гкал	80,43	80,43	80,43	80,43	80,43	80,43	80,43	80,43
Отпуск тепловой энергии с коллекторов, тыс. Гкал	2336,48	2336,58	2336,58	2336,58	2336,56	2336,52	2336,03	2335,32
Хозяйственные нужды тепловой энергии, тыс. Гкал	11,77	11,77	11,77	11,77	11,77	11,77	11,77	11,77
Отпуск тепловой энергии с коллекторов внешним потребителям, тыс. Гкал	2324,71	2324,81	2324,81	2324,81	2324,79	2324,75	2324,27	2323,55
Потери тепловой энергии в тепловых сетях, тыс. Гкал	0,39	0,39	0,39	0,39	0,38	0,38	0,37	0,36
Полезный отпуск тепловой энергии потребителям, тыс. Гкал	2324,33	2324,43	2324,43	2324,43	2324,41	2324,37	2323,89	2323,19
Коэффициент использования установленной тепловой мощности, %	35,6	35,6	35,6	35,6	35,6	35,6	35,6	35,6
Удельный расход условного топлива на отпуск тепловой энергии, кг.у.т./Гкал	163,9	163,8	163,8	163,8	163,8	163,7	163,7	163,7
Расход условного топлива на отпуск тепловой энергии, тыс. т.у.т	382,96	382,8	382,8	382,7	382,7	382,5	382,4	382,3
Теплота сгорания природ- ного газа, ккал/н.м³	8000	8000	8000	8000	8000	8000	8000	8000
Расход природного газа на отпуск тепловой энергии, тыс. т.у.т	289,7	289,3	289,3	290,3	290,3	290,7	290,6	290,5
Расход природного газа на отпуск тепловой энергии, млн. н. м ³	253,5	253,2	253,2	254,0	254,0	254,4	254,3	254,2
Теплота сгорания угля, ккал/кг	5162	5196	5196	5196	5196	5202	5202	5202
Расход угля на отпуск тепло- вой энергии, тыс. т.у.т	9,29	9,46	9,46	9,46	9,46	8,88	8,88	8,88

Производственные ко- тельные	2019	2020	2021	2022	2023	2024	2029	2033
Расход угля на отпуск тепловой энергии, тыс. т.н.т	12,60	12,75	12,75	12,75	12,75	11,95	11,95	11,95
Теплота сгорания мазута, ккал/кг	9689	9703	9703	9700	9700	9700	9700	9700
Расход мазута на отпуск тепловой энергии, тыс. т.у.т	11,07	11,07	11,07	9,99	9,99	9,99	9,99	9,99
Расход мазута на отпуск тепловой энергии, тыс. т.н.т	8,00	7,99	7,99	7,21	7,21	7,21	7,21	7,21
Теплота сгорания дизельного топлива, ккал/кг	10300	10300	10300	10300	10300	10300	10300	10300
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.у.т	68,73	68,73	68,73	68,73	68,73	68,73	68,73	68,73
Расход дизельного топлива на отпуск тепловой энергии, тыс. т.н.т	46,71	46,71	46,71	46,71	46,71	46,71	46,71	46,71
Теплота сгорания прочего топлива, ккал/кг	2960	2960	2960	2960	2960	2960	2960	2960
Расход прочего топлива на отпуск тепловой энергии, тыс. т.у.т	4,20	4,20	4,20	4,20	4,20	4,20	4,20	4,20
Расход прочего топлива на отпуск тепловой энергии, тыс. т.н.т	9,92	9,92	9,92	9,92	9,92	9,92	9,92	9,92

Общий расход условного топлива не меняется, изменений по использованию топлива на производственных котельных не планируется.

Далее представлен расход по видам топлива производственных котельных на протяжении всего перспективного периода до 2033 года

Таблица 6.2. Общий расход топлива, используемого на производственных котельных г. Омска на весь перспективный период до 2033 года

	1							
Вид топлива	2019	2020	2021	2022	2023	2024	2029	2033
Расход газа, млн.н.м ³	253	253	253	254	254,0	254,4	254,3	254,2
Расход угля, тыс.тнт	12,6	12,7	12,7	12,7	12,7	12,0	12,0	12,0
Расход мазута,тыс.м ³	8,00	7,99	7,99	7,21	7,21	7,21	7,21	7,21
Расход ДТ, тыс.м3	46,71	46,71	46,71	46,71	46,71	46,71	46,71	46,71
Расход прочего топлива, тыс.тнт	9,92	9,92	9,92	9,92	9,92	9,92	9,92	9,92

Расход природного газа увеличивается с 2022 года в связи с переводом котельной 2.22 ОАО «РЖД» с мазута на сжигание природного газа, с 2024 года с переводом котельной 2.24 с угля на сжигание природного газа.

Доли использования топлива отдельно по их видам представлены ниже (Таблица 6.3).

Таблица 6.3. Топливопотребление природного газа, угля. Мазута. ДТ и прочего топлива на производственных котельных г. Омска на весь перспективный период до 2033 года

KO TOSIBIIBIX TI OMORA HA BOOB HOPOH		אסווסף	1 HO -00	у . ОД ч				
Вид топлива	2019	2020	2021	2022	2023	2024	2029	2033
Расход газа, %	76%	76%	76%	76%	76%	76%	76%	76%
Расход угля, %	2%	2%	2%	2%	2%	2%	2%	2%
Расход мазута, %	3%	3%	3%	3%	3%	3%	3%	3%
Расход ДТ, %	18%	18%	18%	18%	18%	18%	18%	18%
Расход прочего топлива, %	1%	1%	1%	1%	1%	1%	1%	1%

На производственных котельных преобладает использование природного газа на протяжении всего периода до 2033 года.

6.3 Описание изменений в перспективных топливных балансах за период, предшествующий актуализации схемы теплоснабжения, в том числе введенных в эксплуатацию построенных и реконструированных источников тепловой энергии

Для описания изменений в перспективных топливных балансах рассмотрим изменения расхода топлива в тут по диаграмме (Рисунок 6.1).

Рисунок 6.1 Перспективные расходы условного топлива производственных котельных г. Омска действующей актуализации и актуализации 2018 года.

Расход топлива изменился по сравнению с прошлой актуализацией за счет корректировки отпуска тепла в 2025 году по котельной 4.03 ОАО "Газпромнефть - Омский НПЗ" пр.Губкина,1.

Расход условного топлива всех котельных г. Омска по видам топлива на весь период актуализации представлен ниже.

Таблица 6.4. Перспективное потребление условного топлива котельными г. Омска, тыс.тут

Расход топлива	2019	2020	2021	2022	2023	2024	2029	2033
Расход газа, тыс.тут	1239	1264	1262	1274	1242	1243	1245	1236
Расход угля, тыс.тут	12	12	12	12	12	12	12	12
Расход мазута,тыс.тут	24	20	18	10	10	10	10	10
Расход дт. тыс.тут	69	69	69	69	69	69	69	9
Расход прочего топлива (щепа, опилок, дров) тыс.тут	4	4	4	4	4	4	4	4
Всего, тыс.тут	1256	1279	1274	1277	1246	1246	1249	1239



Рисунок 6.2 - Топливопотребление природного газа, угля, мазута, ДТ и прочего топлива на котельных г. Омска

Из диаграммы топливопотребления к 2033 году наблюдается:

- увеличение потребления природного газа на 1,5 %,
- снижение потребления угля на 0,1%,
- снижение потребления мазута на 1,05 %,
- снижение потребления ДТ на 0,7%.

Расход альтернативного топлива в виде отходов производства не меняется и составляет 0,3% от общего потребления топлива.

7. ОЦЕНКА ЗНАЧЕНИЙ НОРМАТИВНЫХ ЗАПАСОВ ТОПЛИВА

Значения нормативных запасов натурального топлива котельных рассчитаны согласно приказу Минэнерго России №469 «Об утверждении порядка создания и использования тепловыми электростанциями запасов топлива», от 22.08.2013 года. Оценка перспективных значений нормативов создания запасов топлива на период 2019-2033 гг., рассчитанных на основании перспективных тепловых нагрузок и перспективного отпуска тепла, и электроэнергии приведена ниже в Таблица 7.1.

Таблица 7.1 Прогноз нормативов создания запасов топлива до 2033 г.

аблица 7.1 Прогноз н	•		апасов	• • • • • • • • • • • • • • • • • • • •			_		
Энергоисточ-	HF	1 3Т, тнт		H;	93 Т, тнт		0		
ники г. Омск	Уголь	Мазут	ДТ	Уголь	Мазут	ДТ	Уголь	Мазут	ДТ
				2019 г.					
AO «TΓK-11»	74757	2125	-	179330	200	-	254087	3673	-
AO «Омск PTC»	3820	2397	ı	10561	8	-	14381	2394	1
МП г.Омска "Тепловая ком- пания"	16	2605	279	119	1232	17	135	3837	296
Котельные ТСО	57	707	331	185	1141	940	242	1330	1195
Итого:	78 650	7 819	279	190 195	2 534	17	268 845	11 230	1491
				2025-2029	Γ.				
AO «TΓK-11»	74757	2125	-	179330	200	-	254087	3673	-
AO «Омск PTC»	3820	2397	-	10561	8	-	14381	2394	-
МП г.Омска "Тепловая ком- пания"	21	2127	174	102	1170	11	123	3297	185
Котельные ТСО	57	396	325	185	76	912	242	472	1237
Итого:	78 655	7 044	499	190 178	1 452	923	268 833	9 833	1422
				2030-2033	Г.				
AO «TΓK-11»	74757	2125	-	179330	200	-	254087	3673	-
AO «Омск PTC»	3820	2397	-	10561	8	-	14381	2394	-
МП г.Омска "Тепловая ком- пания"	21	2127	174	102	1170	11	123	3297	185
Котельные ТСО	57	396	325	185	76	912	242	472	1237
Итого:	78 655	7 044	499	190 178	1 453	923	268 833	9 834	1422

Общий нормативный запас угля к 2033 году меняется незначительно, ОНЗ мазута уменьшится на 12,3% по отношению к уровню 2019 г и ОНЗ дизельного топлива - на 4,6% в связи с прогнозируемыми приростами тепловых нагрузок на энергоисточниках города.

8. СУММАРНОЕ ПОТРЕБЛЕНИЕ ТОПЛИВА ЭНЕРГОИСТОЧНИКАМИ Г.ОМСКА

На рисунке (Рисунок 8.1) приведен отпуск тепловой энергии до 2033 года от энергоисточников г. Омска.

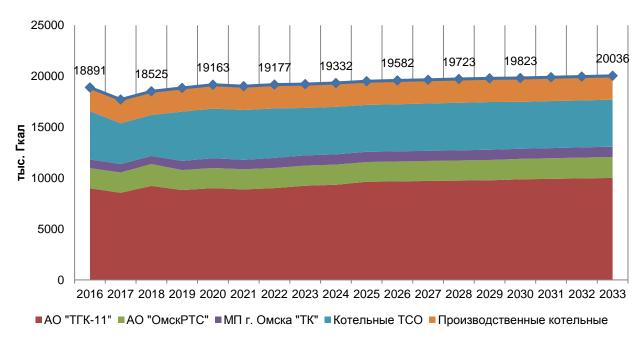


Рисунок 8.1 Отпуск тепла по энергоисточникам г. Омска до 2033 года.

Наибольшее увеличение отпуска тепла к 2033 году наблюдается на энергоисточниках AO «ТГК-11».

На рисунке (Рисунок 8.2) представлены прогнозные значения потребления условного топлива энергоисточниками г. Омска.

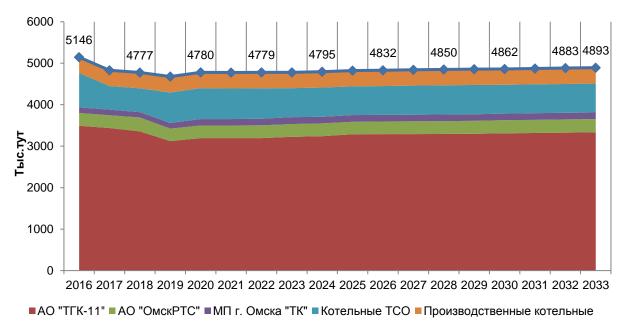


Рисунок 8.2 Прогнозные значения потребления условного топлива энергоисточниками г. Омска в перспективе до 2033 года.

Таким образом, наибольшее потребление условного топлива к 2033 году ожидается на энергоисточниках АО «ТГК-11». Доля расхода топлива на АО «ТГК-11» на 2033 г. от общегородского расхода топлива составит 68,1 %, АО «ОмскРТС» – 6,6 %, МП г. Омска «Тепловая компания» – 3,3%, котельные теплоснабжающих организаций – 14,2%, производственные котельные – 7,8%.

8.1 Преобладающий в городе Омске вид топлива, определяемый по совокупности всех систем теплоснабжения, находящихся в городском округе

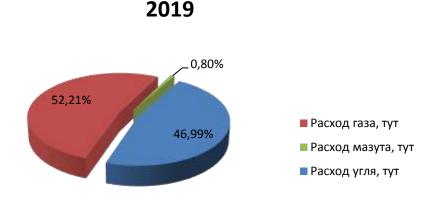

В таблице ниже (Таблица 8.1) представлены прогнозные значения потребления натурального топлива энергоисточниками г. Омска.

Таблица 8.1 Прогнозные значения потребления натурального топлива энергоисточниками г. Омска в перспективе до 2033 года, тыс.тнт

		2019	2020	2021	2022	2023	2024	2029	2033
<u>-</u> -	Расход угля, тыс.т	3900,03	3914,46	3914,46	3914,46	3953,01	3961,22	4061,61	4109,83
AO "TFK-11"	Расход газа, млн.м ³	781,25	860,34	860,34	860,34	869,73	876,99	880,37	886,40
AO	Расход мазута, тыс.т	11,69	12,15	12,15	12,15	12,88	12,88	12,88	12,88
ž	Расход угля, тыс.т	6,50	11,20	11,20	11,20	11,20	11,20	13,05	13,27
AO "OMCK PTC"	Расход газа, млн.м ³	255,38	256,68	256,64	256,92	257,80	260,63	260,70	269,61
AC	Расход мазута, тыс.т	0,08	0,12	0,12	0,12	0,12	0,12	0,14	0,14
ска	Расход угля, тыс.т	0,68	0,44	0,46	0,46	0,46	0,46	0,46	0,45
г. Омска "ТК"	Расход газа, млн.м ³	119,65	135,77	138,03	145,58	148,72	147,12	146,42	146,53
M	Расход мазута, тыс.т	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
PIE	Расход угля, тыс.т	2,58	2,59	2,59	2,59	2,59	2,59	2,59	2,59
Котельные ТСО	Расход газа, млн.м ³	695,76	730,41	731,13	733,86	704,29	706,71	710,82	703,12
Kol	Расход мазута, тыс.т	9,02	6,68	4,65	0,04	0,04	0,04	0,04	0,04
ē	Расход угля, тыс.т	12,6	12,75	12,75	12,75	12,75	11,95	11,95	11,95
Производственные котельные	Расход газа, млн.м ³	253,5	253,2	253,2	305,6	305,6	306	305,9	305,8
изводствен котельные	Расход мазута, тыс.т	8	8	8	7,2	7,2	7,2	7,2	7,2
оизв Кот	Расход ДТ, тыс.т	46,7	46,7	46,7	46,7	46,7	46,7	46,7	46,7
	Расход иного топ- лива, тыс.т	9,9	9,9	9,9	9,9	9,9	9,9	9,9	9,9
۶ ک	Расход угля, тыс.т	3922,39	3941,44	3941,46	3941,46	3980,01	3987,42	4089,66	4138,08
Всего по городу	Расход газа, млн.м ³	2105,54	2236,40	2239,34	2302,30	2286,14	2297,45	2304,20	2311,47
B	Расход мазута, тыс.т	28,79	26,95	24,92	19,51	20,24	20,24	20,26	20,26

В целом за рассматриваемый период расход натурального топлива по энергоисточникам города Омска изменяется незначительно.

На диаграмме (Рисунок 8.3) представлена перспективная структура топливопотребления энергоисточниками города Омска по видам условного топлива в 2019 и 2033 гг. Структура использования топлива на источниках тепла г. Омска рассчитана из суммарных объемов условного топлива по каждому виду.

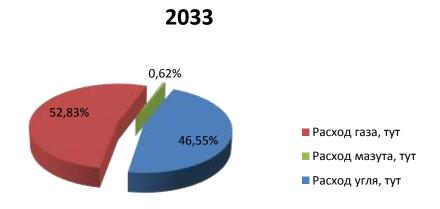


Рисунок 8.3 Структура потребления топлива энергоисточниками г. Омска по видам топлива в 2019 и 2033 гг.

Из диаграммы видно, что в городе Омске преобладает использование природного газа в качестве топлива на котельных города, на теплоисточниках АО «ТГК-11» с комбинированной выработкой энергии используется уголь для котлов, спроектированных на сжигание твердого топлива.

При увеличении расхода природного газа в планируемом периоде до 2033 года как основного топлива, потребляемого источниками тепловой энергии необходимо согласование с программой газификации города Омска и внесением корректировок с учетом увеличения потребления природного газа до 2033 года.